
A Factor-Graph Approach for Optimization Problems
with Dynamics Constraints

Mandy Xie, Alejandro Escontrela, Frank Dellaert

Abstract— In this paper, we introduce dynamics factor graphs
as a graphical framework to solve dynamics problems and
kinodynamic motion planning problems with full consideration
of whole-body dynamics and contacts. A factor graph represen-
tation of dynamics problems provides an insightful visualization
of their mathematical structure and can be used in conjunction
with sparse nonlinear optimizers to solve challenging, high-
dimensional optimization problems in robotics. We can easily
formulate kinodynamic motion planning as a trajectory op-
timization problem with factor graphs. We demonstrate the
flexibility and descriptive power of dynamics factor graphs by
applying them to control various dynamical systems, ranging
from a simple cart pole to a 12-DoF quadrupedal robot.

I. INTRODUCTION & RELATED WORK

Rigid-body dynamics is a fundamental problem that is
often involved in the study of robotics. Specifically, roboti-
cists use inverse dynamics algorithms to compute motor
torques in many control problems and forward dynamics
algorithms in simulators. Researchers have proposed a va-
riety of algorithms to solve the inverse dynamics prob-
lem, including RNEA [41], [19], [48]. Similarly, algorithms
like the Composite-Rigid-Body Algorithm (CRBA) [60],
[18], and the Articulated-Body Algorithm (ABA) [17] have
been proposed to solve the forward dynamics problem.
Rodriguez [52], [51] built a unified framework based on
the concept of filtering and smoothing to solve both inverse
and forward dynamics problems. Based on the work by
Rodriguez et al. [53], Jain [30], [31], [32], [33] applied
graph theory to dynamics problems, and analyzed various
algorithms to solve dynamics problem in a unified formu-
lation. Ascher et al. [1] unified the derivation of CRBA
and ABA as two elimination methods used to solve forward
dynamics. Various physics engines implement these algo-
rithms, including RBDL [19], Bullet Physics [10], ODE [57],
MuJoCo [59], DART [39], Pinocchio [8], etc. However, these
dynamics algorithms are not intuitive to understand, and
they usually act like black boxes in those physics engines.
Hence, it is difficult to leverage these tools to solve various
practical problems with dynamics involved, such as optimal
control, kinodynamic motion planning, system modeling,
state estimation, and simulation.

Developing a single mathematical representation that al-
lows for optimization of controls for arbitrary dynamical
systems is not trivial. Much prior work requires expert
knowledge of a system’s dynamics to develop motion plan-
ning algorithms tailored to a particular system. In legged

Mandy, Alejandro, and Frank are at the Georgia Institute of Technology
Atlanta, GA 30332, USA
(manxie|aescontrela|fd27)@gatech.edu

locomotion, various simplified dynamics models have been
proposed to enable the control of legged robots. For instance,
Kajita et al. [36] model a bipedal robot as a linear inverted
pendulum, which enables control of the robot’s center of
mass position along a plane. Blickhan et al. [6] further refine
this dynamics model by adding a spring element, thereby
enabling more sophisticated trotting and hopping gaits. Dai
et al. [11] employs the centroidal dynamics model, which
neglects the robot’s time-varying inertia matrix and uses
Newton’s second law of translation and rotation to model
the effect of contact forces on the robot’s linear and angular
acceleration. Researchers studying the control of UAVs also
utilize simplified dynamics models [61]. These simplified
dynamics models are often exploited in trajectory optimiza-
tion to optimize over motion plans [62], [63]. However,
extending these trajectory optimization techniques to control
other robotic systems requires significant effort and expert
knowledge, as careful consideration of the robot’s dynamics
is required to ensure that optimized trajectories are still valid
for a new system. Posa et al. [50] introduces a framework
that allows for trajectory optimization of dynamical systems
with contacts but only demonstrates its application to a
single planar bipedal robot. Mordatch et al. [43] introduces
Contact-Invariant Optimization, a behavior synthesis frame-
work that leverages a simplified dynamics model to produce
a wide variety of human behaviors for animated characters.

In this work, we introduce dynamics factor graphs (DFGs)
as a framework for solving classical dynamics problems
and advanced problems in control and motion planning. We
leverage the descriptive power of DFGs to model a variety
of systems, ranging from the nonlinear cart-pole to a 7-
DoF Kuka Arm to a 12-DoF quadrupedal robot. We then
incorporate DFGs into a trajectory optimization framework
and use state-of-the-art sparse nonlinear optimizers to gener-
ate motion plans for various robots, all without requiring
simplified dynamics models or expert knowledge of the
robot’s dynamics a-priori. The main contributions are:

• A graphical representation of dynamics problems with
factor graphs;

• Demonstration of solving a large variety of problems
in robotics with factor graphs, including classical dy-
namics, dynamics with constraints and objectives, and
kinodynamic motion planning;

• Demonstration of using a state-of-the-art sparse non-
linear optimizer based on GTSAM and a hinge loss
formulation of inequality constraints to solve high-
dimensional optimization problems in robotics.

ar
X

iv
:2

01
1.

06
19

4v
1

 [
cs

.R
O

]
 1

1
N

ov
 2

02
0

II. REVIEW OF MANIPULATOR DYNAMICS

We briefly review the modern geometric view of robot
dynamics and follow the exposition and notation from the
recent text by Lynch and Park [42]. As convincingly ar-
gued in their introduction, this geometric view pioneered by
Brockett [7] and Murray et al. [47] unlocks the powerful
tools of modern differential geometry to reason about robot
dynamics. It will also help below in describing the various
dynamics algorithms in a concise graphical representation.

Closely following Section 8.3 in [42], applying this to
the links of a serial manipulator and taking into account the
constraints at the joints, we obtain four equations relating
both link and joint quantities. In particular, the twist and
acceleration Vi and V̇i for the ith link are expressed in a
body-fixed coordinate frame rigidly attached to the link. The
wrench transmitted through joint i is denoted as Fi, and Gi
is the link’s inertia matrix. Without loss of generality, below
we assume all rotational joints, and we then have:

Vi − [AdTi,i−1(θi)]Vi−1 −Aiθ̇i = 0 (1)

V̇i − [AdTi,i−1(θi)]V̇i−1 −Aiθ̈i − [adVi]Aiθ̇i = 0 (2)

AdTTi+1,i(θi+1)Fi+1 −Fi + GiV̇i − [adVi]
TGiVi = 0 (3)

FTi Ai − τi = 0 (4)

where Ai is the screw axis for joint i (expressed in link i),
and AdTi,i−1(θi) is the adjoint transformation associated with
the transform Ti,i−1 between the links (a function of θi).

The four equations (1)-(4) express the dynamic constraints
between link i and link i − 1 imposed by joint i: (1)
describes the relationship between twist Vi and twist Vi−1,
where θ̇i is the angular velocity of joint i; (2) describes the
constraint between acceleration V̇i and acceleration V̇i+1,
which involves components due to joint acceleration θ̈i and
the acceleration caused by rotation; (3) describes the balance
between the wrench Fi through joint i and the wrench Fi+1

applied through joint i + 1; (4) describes that the torque
applied at joint i equals to the projection of wrench Fi on
the screw axis Ai corresponding to joint i. Gravity is not
considered above but can easily be accounted for using a
”trick” described by Lynch & Park [42] that adds an extra
acceleration term to the base.

III. A FACTOR GRAPH APPROACH

This paper proposes to represent optimal control problems
involving dynamic constraints using a factor graph [37], a
graphical model to describe the structure of sparse compu-
tational problems. A factor graph consists of factors and
variables, where factors correspond to objectives, equality
constraints, and inequality constraints involving the variables
being optimized over. Variables are only connected to factors
that they are involved in, and the resulting bipartite graph
reveals the sparsity of the computation and enables the use
of efficient optimization techniques. Factor graphs have been
used in constraint satisfaction [55], [21], [12], AI [49], [56],
[38], [22], [37], sparse linear algebra [23], [24], [29], infor-
mation theory [58], [40], combinatorial optimization [4], [3],

V0

V̇0

θ1

θ̇1 θ̈1

V1

V̇1

F1

τ1

θ2

θ̇2 θ̈2

V2

V̇2

F2

τ2

θ3

θ̇3 θ̈3

V3

V̇3

F3

τ3

F t

Prior Factor:
base twist

Prior Factor:
base acceleration

Twist Factor: Vi − [AdTi,i−1(θi)]Vi−1 −Aiθ̇i = 0

Acceleration Factor:
V̇i − [AdTi,i−1(θi)]V̇i−1 −Aiθ̈i − [adVi]Aiθ̇i = 0

Wrench Factor:
AdTTi+1,i(θi+1)

Fi+1 −Fi + GiV̇i − [adVi]
TGiVi = 0

Torque Factor:
(Fi)TAi − τi = 0

Prior Factor:
tool wrench

Fig. 1: Dynamics factor graph for a RRR robot.

[5], and query theory [2], [25]. They have been successfully
applied in other areas of robotics, such as SLAM [35], [34],
[14], [20] and state estimation in legged robots [28], [64].

A. Factor Graphs for Constrained Optimization

A constrained optimization problem may be written as

min
χ

f(χ)

s.t. gi(χ) = 0 for i = 1, . . . , n

hj(χ) ≤ 0 for j = 1, . . . ,m

(5)

where gi(x), i = 1, . . . , n and hj(x), j = 1, . . . ,m are
equality and inequality constraints, respectively and f(x) is
an objective function which we wish to optimize subject to
the constraints. We convert the constrained problem into an
unconstrained problem as follows:

χ∗ = min
χ
‖rf (χ)‖2Σf

+
∑
i=1...n

‖rg,i(χ)‖2Σg,i

+
∑

j=1...m

‖rh,j(χ)‖2Σh̃,j

(6)

where rf (χ) = log f(χ) is the log value of the objective
function, rg,i(χ) = log gi(χ) are the log residual error
functions associated with equality constraints, and rh,j(χ) =
log h̃j(χ) = log max(0, hj(χ)) is the log of a hinge loss
approximation of the residual error associated with the
inequality constraints. The objective function f(χ), equality
constraints gi(χ), and inequality constraints hj(χ) may all
be represented as factors in a factor graph. Fig. 4 shows a
schematic representation of a factor graph, where solid nodes
correspond to objective functions or constraints.

B. Dynamics Factor Graphs (DFGs)

We use a factor graph to represent the structure of the
dynamics constraints (1)-(4) for a particular robot config-
uration. Fig. 1 illustrates this for a serial chain comprised
of three revolute joints (RRR). Variables including twists Vi,
accelerations V̇i, wrenches Fi, joint angles θi, joint velocities
θ̇i, joint accelerations θ̈i, and torques τi are constrained to

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(a) Simplified inverse DFG

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(b) Eliminate all the τ .

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(c) Eliminate all the F .

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(d) Eliminate all the V̇ .

Fig. 2: Steps in elimination on the inverse DFG.

satisfy the rigid-body dynamics equations (1)-(4). We can
use the dynamics factor graph corresponding to all variables
and constraints to model various dynamical systems, ranging
from serial manipulators with fixed bases to legged robots
with floating bases. We can also use them to solve classi-
cal dynamics problems (i.e., inverse and forward dynamics
problems) and optimization problems in motion planning, as
discussed in the sections below.

IV. SOLVING CLASSICAL DYNAMICS PROBLEMS

This section demonstrates how to solve inverse and for-
ward dynamics problems with DFGs and illustrate the clas-
sical dynamics algorithms within this framework.

A. Inverse Dynamics

In inverse dynamics, we seek the joint torques τi to realize
the desired joint accelerations θ̈i. We can construct a sim-
plified, less cluttered, inverse dynamics graph by replacing
all known variables with constants in the factors to which
they are connected. Fig. 2a shows the DFG for a RRR robot,
corresponding to the nine linear constraints of the 3R inverse
dynamics problem. Solving the inverse dynamics problem is
equivalent to solving this factor graph, and it can be done by
back-substitution after performing elimination on the graph.

We illustrate the elimination process in the 3R case for a
particular ordering in Fig. 2. The elimination is performed in
the order τ3 τ2 τ1, F1 F1 F3, V̇3 V̇3 V̇1. Fig. 2b shows the
result of first eliminating the torques τi, where the arrows
show that the torques τi only depend on the corresponding
wrenches Fi. We then eliminate F1, which results in a
dependence of F1 on V̇1 and F2. After eliminating all the
wrenches, we get the result as shown in Fig. 2c. Finally,
we eliminate the all the twist accelerations V̇3 V̇3 V̇1, in
that order. After completing all these elimination steps, the
inverse dynamics factor graph in Fig. 2a is thereby converted
to the directed acyclic graph (DAG) as shown in Fig. 2d.

After elimination, back-substitution in reverse elimination
order solves for the values of all intermediate quantities and
the desired torques. For the example ordering in 2, back-
substitution first computes the 6-dimensional accelerations
V̇i, then the link wrenches Fi, and finally the scalar torques.

θ̈1

V̇1

F1

θ̈2

V̇2

F2

θ̈3

V̇3

F3

(a)

V̇1

F1

θ̈1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(b)

V̇1

F1

θ̈1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(c)

Fig. 3: (a) Simplified forward DFG; (b) CRBA ordering
DAG; (c) ABA ordering DAG.

V0

V̇0

θ1

θ̇1 θ̈1

V1

V̇1

F1

τ1

θ2

θ̇2 θ̈2

V2

V̇2

F2

τ2

θ3

θ̇3 θ̈3

V3

V̇3

F3

τ3

F t

V3

V̇3

Joint
Limit
Factor

Prior
Twist
Factor

Prior
Accel
Factor

Twist
Factor

Acceleration
Factor

Wrench
FactorTorque

Factor

Min Torque Factor

Prior
Wrench
Factor

Contact
Factor

Fig. 4: Constrained dynamics factor graph for a RRR robot.

This exactly matches the forward-backward path used by the
recursive Newton-Euler algorithm (RNEA) [41].

B. Forward Dynamics

In traditional expositions, the forward dynamics problem
cannot be solved as neatly as the relatively easy inverse
dynamics problem. In the forward case, we seek the joint
accelerations θ̈ when given θ, θ̇, and τ . Similar to the
inverse dynamics factor graph, we can simplify the forward
dynamics factor graph, as shown in Fig. 3a.

In the same spirit as our work, Ascher et al. [1] shows that
two of the most widely used forward dynamics algorithms,
CRBA [18] and ABA [17], can be explained as two different
elimination methods to solve the same linear system.

In our framework, CRBA and ABA can also be visualized
as two different DAGs resulting from solving the forward
dynamics factor graph with two different elimination orders
shown in Fig. 3b and Fig. 3c. CRBA first eliminates all the
wrenches Fi, then eliminates all the accelerations V̇i, and
eliminates all the angular accelerations θ̈i last. In contrast,
in ABA we alternate between eliminating the wrenches Fi,
accelerations V̇i and angular accelerations θ̈i for i ∈ n . . . 1.
We can view the resulting DAGs as graphical representations
of CRBA and ABA, and for a given robot configuration,
we can write a custom back-substitution program in reverse
elimination order.

V. SOLVING CONSTRAINED DYNAMICS PROBLEMS

This section briefly explains how to solve dynamics prob-
lems with joint limit constraints, contacts, task-dependent
objectives, and redundancy resolution. The complexity of

practical problems in robotics far surpasses that of the previ-
ous section’s classical problems. For instance, the system has
to stay within its joint limits at any time instance to avoid
damage. Redundancy issues often occur when the system is
not fully constrained, for instance, solving inverse dynamics
for a manipulator with kinematic loops or planning motion
for tasks in which we constrain the external wrench acting
on the end-effector in only one direction. Also, when there
is contact involved in the motion, the dynamics problem
becomes even more complicated. In motion planning or
optimal control literature, joint limits and contacts are usually
represented as constraints in the optimization problem, and
the redundancy issue can be resolved by optimizing for a
minimum torque objective.

Here, we propose to solve all these problems with DFGs
by incorporating them as factors in the graph, as shown in
Fig. 4. We then solve the constrained optimization dynamics
problem with GTSAM [13], [14].

A. Joint Limit Factors

Joint limits are formulated as the following inequality
constraint for each joint angle qi, hlim(qi) − θlim, i ≤ 0,
where θlim, i is the limit for the ith joint. We incorporate this
inequality in a hinge loss function:

h̃lim(qi) =

 α(θlim, lower − qi + ε) if qi − θlim, i ≤ ε
α(qi − θlim, upper + ε) if θlim, upper − qi ≤ ε
0 otherwise

(7)
where θlim, lower is the lower limit, θlim, upper is the upper
limit, ε is a constant threshold to prevent exceeding the
limit, and α is a constant ratio which determines how fast
the error grows as the value approaches the limit. If the
value is within the threshold, then the cost is 0. Hence, the
limit violations are prevented during the optimization. This
technique is characteristic of interior point method [15].

B. Minimum Torque Factor

Minimum torque objective is formulated as an equality
constraint, and cost function can be expressed as gτ (τi) = τi,
where τi is the torque at joint i. The cost grows as the torque
increases, and we can expect that the optimizer solves for a
solution with minimum torque values.

C. Contact Factor (Friction Cone)

A desirable property of legged locomotion controllers is
to provide robustness against slipping motions. This prop-
erty benefits the robot’s stability and improves locomotion
efficiency. A common approach to avoid slipping motions
is to constrain the contact forces at the end-effectors to lie
within a friction cone [62], [26]. This inequality constraint
prevents the lateral forces from dominating the resistive
Coulomb friction forces, thereby preventing slipping. Con-
sider the external wrench at the robot’s ith end-effector Fei =
[me

i ; f
e
i] ∈ χ. The contact factor enforces the following

inequality constraint:

‖fei − (fei · ni)ni‖2 ≤ µi(fei · ni)

µi is the static friction coefficient at the ith contact, and bi
is the vector normal to the surface. This inequality constraint
is enforced using a hinge loss function and incorporated as
a factor connected to each end-effector in the DFG.

VI. MOTION PLANNING WITH DYNAMICS FACTOR
GRAPH (DFGP)

Start Pose
Factor

Goal Pose
Factor

Trajectory Smoothness
Factor

Collision-avoidance
Factor

Dynamics
Factor

Task-dependent
Factor

Fig. 5: kinodynamic motion planning factor graph, where
solid nodes indicate factors and hollow nodes correspond to
the decision variables.

After solving the constrained dynamics problem, motion
planning with the whole-body dynamics constraints becomes
straightforward. A simple intuition is that we can view the
constrained dynamics problem as a single time instance
of the motion planning problem and incorporate the con-
strained dynamics factor graphs into a trajectory optimization
problem in the style of GPMP2 [45], as shown in Fig. 5.
To accomplish a real motion planning task, we need to
add a few more factors to the graph. For instance, we
use initial and goal pose factors to satisfy the demand of
moving the end-effector from the initial pose to a goal
pose, trajectory smoothness factors are applied to encourage
smooth trajectories, and we add collision avoidance factors
to ensure collision-free motion. Other task-dependent factors
can be easily incorporated into a DFG as well. Due to the
page limit, we only briefly describe the trajectory smoothness
factor, which is only slightly different from the one outlined
in GPMP2. For details on start and goal factors and collision
avoidance factors, one can refer to GPMP2 [45].

A. Trajectory Smoothness Factor

Here we describe a method which we use to optimize
smooth trajectories using DFGs and additional trajectory
factors. We use a method similar to the one discussed
in GPMP2, but with the assumption of a continuous-time
configuration space trajectory with a constant acceleration
instead of constant velocity, and add a Gaussian process
(GP) smoothness prior with cost function, gm(xi−1, xi) =
xi − Φ(ti, ti−1)xi−1 and covariance matrix

Σ =

 1
2∆t5iQC

1
8∆t4iQC

1
6∆t3iQC

1
8∆t4iQC

1
3∆t3iQC

1
2∆t2iQC

1
6∆t3iQC

1
2∆t2iQC ∆tiQC

 (8)

where QC is the power-spectral density matrix associated
with the GP. We also define the state transition matrix

Φ(ti, ti−1) =

1 ∆ti
1
2 (∆ti)

2

0 1 ∆ti
0 0 1

 (9)

associated with a constant acceleration assumption between
times ti−1 and ti, and ∆ti = ti − ti−1.

B. Kinodynamic Motion Planning Factor Graph

A kinodynamic motion planning factor graph, as shown in
Fig. 5, is designed to solve the kinodynamic motion planning
problem[16], in which both constraints and objectives are
represented as factors. In particular, we use constrained
DFGs for each time instance, and connect them with trajec-
tory smoothness factors (Section VI-A) to encourage smooth
trajectories. In addition, the initial pose constraint, goal pose
constraint, and obstacle avoidance objective are included to
fulfill the task while avoiding collisions.

(a)

(b)

(c)

Fig. 6: The DFGP was used optimize a trajectory for the
cart-pole system that achieves two configurations in quick
succession. (a) and (b) show the trajectory generated to reach
the 1st and 2nd configuration, respectively. (c) demonstrates
that the optimized trajectory satisfies the constraints imposed
for the 1st (t = 3s) and 2nd configuration (t = 6s), shown as
red and green bars, respectively. (See supplemental videos)

(a) (b)

Fig. 7: (a) DFGP solution with minimum torque constraint;
(b) DFGP solution without minimum torque constraint (See
supplemental videos). More details are described in Sec-
tion VII-B

VII. EXPERIMENTS

We implemented DFGP using the GTSAM Factor Graph
optimization library [13], [14], and ran simulations in V-REP
[54] and PyBullet [10] for visualization.

A. Cart Pole

The cart-pole system is composed of an unactuated simple
pendulum attached to a wheeled cart. A common task
in optimal control is to balance the pendulum around its
unstable equilibrium, using only horizontal forces on the
cart. In this experiment, we tackle a more sophisticated
control problem that involves driving the cart-pole system
to multiple goal configurations in quick succession. We
apply our DFGP algorithm to optimize for a single trajec-
tory that enables the cart-pole system to achieve two goal
configurations at prescribed times. We apply a zero-torque
constraint on the unactuated pendulum. We also apply the
trajectory smoothness factors discussed in section VI-A and
the minimum torque objective discussed in section V-B.
Two goal configurations are imposed as objectives in the
trajectory factor graph:

fgoal,t=ηs(χ) = ‖θt=ηs − θ∗t=ηs‖+ ‖pt=ηs − p∗t=ηs‖ (10)

Where p and θ are the cart-pole’s horizontal position and
pole angle, respectively. The first configuration requires that
the cart-pole come to rest at [p∗t=3s, θ

∗
t=3s] = [1m,πrad].

The second configuration requires that the cart-pole come
to rest at [p∗t=6s, θ

∗
t=6s] = [−1m,−πrad]. Figures 6a and 6b

visualize the cart-pole’s execution of the optimized trajectory.
Fig. 6c demonstrates that the DFGP trajectory satisfies both
the position and velocity objectives for both configurations.

B. Kuka Arm

The KUKA LBR iiwa [9] is a lightweight industry robot
with seven actuated revolute joints. The task performed in
this experiment is to move a block from the floor to its
upright position. Fig. 7a and Fig. 7b show solutions obtained
by DFGP with and without the minimum torque objective,
respectively. In Fig. 7a, we observe that the Kuka arm first
moves towards the center to reduce the moment arm, and
then pushes upwards so that it can bring the block to the
goal location with less torque applied when compared to the
solution shown in Fig. 7b.

Fig. 8: Torque trajectories of Kuka arm experiment. More
details are described in Section VII-B.

We plot the torque trajectories corresponding to the 2nd

and 4th joints of the Kuka arm in Fig. 8 (the two joints
with the highest energy consumption). The solid lines and
dashed lines represent the torque trajectories optimized using
DFGP with and without the minimum torque constraint. We
observe that DFGP produces a more energy-efficient motion
plan when we add the minimum torque factor to the graph.

C. Quadruped

Motion planning for legged robots is a challenging, high-
dimensional optimization problem. The difficulty arises from
the contacts, as the addition and removal of contacts with
the environment leads to time-varying dynamics constraints.
Here we use DFGP to optimize an open-loop trajectory for a
12-DoF quadrupedal robot. We task DFGP with optimizing
a trajectory that guides the robot through six navigation
waypoints. The waypoints are placed on the vertices of a
hexagon with a side length of 1.6m (See Fig. 9b).

We define a kinodynamic motion planning factor graph
and add additional inequality constraints and objectives.
Specifically, we incorporate the contact factor defined in
Section V-C to ensure that the legged robot does not slip. We
also apply a minimum torque factor to encourage efficiency
and joint limit factors to prevent violation of the robot’s joint
limits. In this problem, we add a prior over the robot’s contact
sequence and use GTSAM to optimize for a valid trajectory.

As shown in Fig. 9, the trajectory generated by our system
is highly accurate, leading to little model error even when
executed in an open-loop fashion. The high tracking accuracy
can be explained by our DFG formulation, which models
the whole-body dynamics and does not rely on simplified
dynamics models.

VIII. DISCUSSION

We introduce dynamics factor graphs (DFGs) as a useful
framework for solving various problems in robotics. Our
approach treats rigid-body dynamics constraints as factors
in a factor graph and optimizes the variables to achieve
an objective subjects to dynamics constraints. We also
demonstrated how to extend DFGs to support inequality

(a)

(b)

Fig. 9: Trajectory for a quadrupedal robot optimized using
DFGP and executed in an open loop manner. The dashed
line represents the desired CoM trajectory for the given
contact schedule. The gradated line represents the actual
CoM trajectory when the optimized trajectory is executed
in an open-loop fashion. Our method exhibits low error due
to its consideration of the full dynamics and kinematics.(See
supplemental videos)

constraints and objective functions. Finally, we introduced
DFGP, a motion-planning algorithm that leverages DFGs and
trajectory smoothness factors to optimize motion plans for
arbitrary robotic systems.

In Section IV, we demonstrated the application of DFGs
to classical dynamics problems, such as forward and inverse
dynamics. We saw how our framework intuitively explains
various well-known classical dynamics algorithms as DAGs
resulting from the solving of the DFG with different elimina-
tion orders. We also showed how DFGP can be used to solve
practical problems in control and trajectory optimization. We
were able to optimize trajectories for three very different
robotics systems using a single tool.

In future work, we hope to perform incremental kin-
odynamic motion planning in the style of GPMP2 [46]
and STEAP [44], which successfully applied incremental
inference in factor graphs [34], [14] to kinematic motion
planning problems. Also, it would be exciting to use the
factor-graph-based representation of dynamics to perform
state estimation for dynamically balanced robots, in the spirit
of Hartley et al. [28], [27] and Wisth et al. [64].

REFERENCES

[1] U. M. Ascher, P. K. Dinesh, and B. P. Cloutier. Forward dynamics,
elimination methods, and formulation stiffness in robot simulation. The
International Journal of Robotics Research, 16(6):749–758, 1997.

[2] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, and M. Yan-
nakakis. Properties of acyclic database schemes. In ACM Symp. on
Theory of Computing (STOC), pages 355–362, New York, NY, USA,
1981. ACM Press.

[3] U. Bertele and F. Brioschi. On the theory of the elimination process.
J. Math. Anal. Appl., (1):48–57, July.

[4] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Aca-
demic Press, 1972.

[5] U. Bertele and F. Brioschi. On nonserial dynamic programming. J.
Combinatorial Theory, 14:137–148, 1973.

[6] R. Blickhan. The spring-mass model for running and hopping. J
Biomech, 22(11-12):1217–1227, 1989.

[7] W. Roger Brockett. Robotic manipulators and the product of expo-
nentials formula. In Mathematical theory of networks and systems,
pages 120–129. Springer, 1984.

[8] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard. The Pinocchio C++ library – A fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives. In International Symposium on System
Integration (SII), 2019.

[9] KUKA Robotics Corporation. KUKA LBR iiwa, 2019.
[10] Erwin Coumans and Yunfei Bai. Pybullet, a python module for

physics simulation for games, robotics and machine learning. http:
//pybullet.org, 2016–2019.

[11] H. Dai, A. Valenzuela, and R. Tedrake. Whole-body motion planning
with centroidal dynamics and full kinematics. In 2014 IEEE-RAS
International Conference on Humanoid Robots, pages 295–302, 2014.

[12] R. Dechter and J. Pearl. Network-based heuristics for constraint-
satisfaction problems. Artificial Intelligence, 34(1):1–38, December
1987.

[13] F. Dellaert. Factor graphs and gtsam: A hands-on introduction.
Technical report, Georgia Institute of Technology, 2012.

[14] F. Dellaert and M. Kaess. Factor graphs for robot perception.
Foundations and Trends in Robotics, 6(1-2):1–139, 2017.

[15] I. Dikin. Iterative solution of problems of linear and quadratic
programming. 174(4):747–748, 1967.

[16] Bruce Donald, Patrick Xavier, John Canny, John Canny, John Reif,
and John Reif. Kinodynamic motion planning. Journal of the ACM
(JACM), 40(5):1048–1066, 1993.

[17] R. Featherstone. The calculation of robot dynamics using articulated-
body inertias. The International Journal of Robotics Research,
2(1):13–30, 1983.

[18] R. Featherstone and D. E. Orin. Robot dynamics: equations and
algorithms. In Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), volume 1, pages 826–834. IEEE,
2000.

[19] M. L. Felis. RBDL: An efficient rigid-body dynamics library using
recursive algorithms. Autonomous Robots, 41(2):495–511, 2017.

[20] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. On-manifold
preintegration for real-time visual-inertial odometry. IEEE Trans.
Robotics, 2017.

[21] Eugene C. Freuder. A sufficient condition for backtrack-free search.
J. ACM, 29(1):24–32, 1982.

[22] B.J. Frey, F.R. Kschischang, H.-A. Loeliger, and N. Wiberg. Factor
graphs and algorithms. In Proc. 35th Allerton Conf. Communications,
Control, and Computing, pages 666–680, September 1997.

[23] A. George, J. Liu, and Ng E. Row-ordering schemes for sparse Givens
transformations. I. Bipartite graph model. Linear Algebra Appl, 61:55–
81, 1984.

[24] J.R. Gilbert and E.G. Ng. Predicting structure in nonsymmetric sparse
matrix factorizations. In J.A. George, J.R. Gilbert, and J.W-H. Liu,
editors, Graph Theory and Sparse Matrix Computations, volume 56
of IMA Volumes in Mathematics and its Applications. Springer-Verlag,
New York, 1993.

[25] N. Goodman and O. Shmueli. Tree queries: a simple class of relational
queries. ACM Trans. Database Syst., 7(4):653–677, 1982.

[26] Ruben Grandia, Farbod Farshidian, René Ranftl, and Marco Hutter.
Feedback mpc for torque-controlled legged robots, 2019.

[27] R. Hartley, M. G. Jadidi, L. Gan, J. Huang, J. W. Grizzle, and
R. M. Eustice. Hybrid contact preintegration for visual-inertial-contact
state estimation using factor graphs. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3783–
3790, Oct 2018.

[28] R. Hartley, J. Mangelson, L. Gan, M. Ghaffari Jadidi, J. M. Walls,
R. M. Eustice, and J. W. Grizzle. Legged robot state-estimation
through combined forward kinematic and preintegrated contact factors.
In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 4422–4429, May 2018.

[29] P. Heggernes and P. Matstoms. Finding good column orderings for
sparse QR factorization. In Second SIAM Conference on Sparse
Matrices, 1996.

[30] A. Jain. Unified formulation of dynamics for serial rigid multibody
systems. Journal of Guidance, Control, and Dynamics, 14(3):531–542,
1991.

[31] Abhinandan Jain. Graph theoretic foundations of multibody dynamics
part i: analysis and algorithms. Multibody system dynamics, 26(3):307,
2011.

[32] Abhinandan Jain. Graph theoretic foundations of multibody dynam-
ics part ii: analysis and algorithms. Multibody system dynamics,
26(3):335, 2011.

[33] Abhinandan Jain. Multibody graph transformations and analysis: part
i: tree topology systems. Nonlinear dynamics, 67(4), 2012.

[34] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert. iSAM2: Incremental smoothing and mapping using the Bayes
tree. Intl. J. of Robotics Research, 31:217–236, Feb 2012.

[35] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental
smoothing and mapping. IEEE Trans. Robotics, 24(6):1365–1378,
Dec 2008.

[36] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and
Hirohisa Hirukawa. The 3d linear inverted pendulum model: A simple
modeling for a biped walking pattern generation. volume 1, pages 239
– 246 vol.1, 02 2001.

[37] F.R. Kschischang, B.J. Frey, and H-A. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Trans. Inform. Theory, 47(2), February
2001.

[38] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with proba-
bilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society. Series B (Methodological),
50(2):157–224, 1988.

[39] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz, Sumit Jain,
Yuting Ye, Siddhartha S Srinivasa, Mike Stilman, and C Karen Liu.
Dart: Dynamic animation and robotics toolkit. Journal of Open Source
Software, 3(22):500, 2018.

[40] H.-A. Loeliger. An introduction to factor graphs. IEEE Signal
Processing Magazine, pages 28–41, January 2004.

[41] J. Y. S. Luh, M. W. Walker, and R. P. Paul. On-line computational
scheme for mechanical manipulators. Journal of Dynamic Systems,
Measurement, and Control, 102(2):69–76, 1980.

[42] K. M Lynch and F. C Park. Modern Robotics. Cambridge University
Press, 2017.

[43] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery
of complex behaviors through contact-invariant optimization. ACM
Trans. Graph., 31(4), July 2012.

[44] M. Mukadam, J. Dong, F. Dellaert, and B. Boots. Steap: simultaneous
trajectory estimation and planning. Autonomous Robots, pages 1–20,
2018.

[45] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots. Continuous-
time gaussian process motion planning via probabilistic inference. The
International Journal of Robotics Research, 37(11):1319–1340, 2018.

[46] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots. Continuous-
time gaussian process motion planning via probabilistic inference. Intl.
J. of Robotics Research, 37(11):1319–1340, 2018.

[47] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

[48] D. E. Orin, R. McGhee, M. Vukobratovi, and G. Hartoch. Kinematic
and kinetic analysis of open-chain linkages utilizing newton-euler
methods. Mathematical Biosciences, 43(1-2):107–130, 1979.

[49] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[50] Michael Posa and Russ Tedrake. Direct trajectory optimization of rigid
body dynamical systems through contact. In Emilio Frazzoli, Tomas
Lozano-Perez, Nicholas Roy, and Daniela Rus, editors, Algorithmic

https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
http://pybullet.org
http://pybullet.org

Foundations of Robotics X, pages 527–542, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[51] G. Rodriguez. Recursive forward dynamics for two robot arms in a
closed chain based on kalman filtering and bryson-frazier smoothing.
In Proceedings of the International Symposium on Robot Manipulators
on Recent trends in robotics: modeling, control and education, pages
85–93. Elsevier North-Holland, Inc., 1986.

[52] G. Rodriguez. Kalman filtering, smoothing, and recursive robot
arm forward and inverse dynamics. IEEE Journal on Robotics and
Automation, 3(6):624–639, 1987.

[53] G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A spatial operator
algebra for manipulator modeling and control. The International
Journal of Robotics Research, 10(4):371–381, 1991.

[54] E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly
v-rep): a versatile and scalable robot simulation framework. In Proc.
of The International Conference on Intelligent Robots and Systems
(IROS), 2013. www.coppeliarobotics.com.

[55] R. Seidel. A new method for solving constraint satisfaction problems.
In Intl. Joint Conf. on AI (IJCAI), pages 338–342, 1981.

[56] P. P. Shenoy and G. Shafer. Propagating belief functions using local
computations,. IEEE Expert, 1(3):43–52, Fall 1986.

[57] Russell Smith et al. Open dynamics engine. 2005.
[58] R. Tanner. A recursive approach to low complexity codes. IEEE Trans.

Inform. Theory, 27(5):533–547, Spetember 1981.
[59] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics

engine for model-based control. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012.

[60] M. W. Walker and D. E. Orin. Efficient dynamic computer simulation
of robotic mechanisms. Journal of Dynamic Systems, Measurement,
and Control, 104(3):205–211, 1982.

[61] P. Wang, Z. Man, Z. Cao, J. Zheng, and Y. Zhao. Dynamics modelling
and linear control of quadcopter. In 2016 International Conference on
Advanced Mechatronic Systems (ICAMechS), pages 498–503, 2016.

[62] A. W Winkler, C D. Bellicoso, M. Hutter, and J. Buchli. Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization. IEEE Robotics and Automation Letters,
3(3):1560–1567, 2018.

[63] Alexander W Winkler, Farbod Farshidian, Diego Pardo, Michael
Neunert, and Jonas Buchli. Fast trajectory optimization for legged
robots using vertex-based zmp constraints, 2017.

[64] D. Wisth, M. Camurri, and M. Fallon. Robust legged robot state
estimation using factor graph optimization. IEEE Robotics and
Automation Letters, 4(4):4507–4514, Oct 2019.

	I Introduction & Related Work
	II Review of Manipulator Dynamics
	III A Factor Graph Approach
	III-A Factor Graphs for Constrained Optimization
	III-B Dynamics Factor Graphs (DFGs)

	IV Solving Classical Dynamics Problems
	IV-A Inverse Dynamics
	IV-B Forward Dynamics

	V Solving Constrained Dynamics Problems
	V-A Joint Limit Factors
	V-B Minimum Torque Factor
	V-C Contact Factor (Friction Cone)

	VI Motion Planning with Dynamics Factor Graph (DFGP)
	VI-A Trajectory Smoothness Factor
	VI-B Kinodynamic Motion Planning Factor Graph

	VII Experiments
	VII-A Cart Pole
	VII-B Kuka Arm
	VII-C Quadruped

	VIII Discussion
	References

