
A Unified Method for Solving Inverse, Forward, and Hybrid
Manipulator Dynamics using Factor Graphs

Author Names Omitted for Anonymous Review. Paper-ID [1253]

Abstract—This paper describes a unified method solving for
inverse, forward, and hybrid dynamics problems for robotic
manipulators with either open kinematic chains or closed kine-
matic loops based on factor graphs. Manipulator dynamics is
considered to be a well studied problem, and various different
algorithms have been developed to solve each type of dynamics
problem. However, they are not easily explained in a unified and
intuitive way. In this paper, we introduce factor graphs as a
unifying graphical language in which not only to solve all types
of dynamics problems, but also explain the classical dynamics
algorithms in a unified framework.

I. INTRODUCTION & RELATED WORK

There are three main types of problems involved in the
study of manipulator dynamics: inverse, forward, and hybrid
problems. Inverse dynamics, which is used in control and
motion planning, calculates the torques required at the joints to
generate a desired trajectory of joint positions, velocities and
accelerations. The Newton-Euler (N-E) [12] method is one
of the key approaches in solving inverse dynamics problems
since it results in very efficient recursive algorithms, such as
RNEA [43, 21] and similar methods described in [53] and [63].
Forward dynamics, which is primarily used in the simulation
of robotic manipulators, determines joints accelerations with
torques applied at the joints, again given joint positions and ve-
locities. Algorithms based on the inertia matrix method include
the Composite-Rigid-Body Algorithm (CRBA) [67, 20] and
propagation methods such as the Articulated-Body Algorithm
(ABA) [18]. Finally, hybrid dynamics problems are sometimes
used to incorporate prescribed motions for manipulators, and
works out the unknown forces and accelerations with given
forces at some joints and accelerations at other joints. Since
neither inverse nor forward dynamics algorithms can be di-
rectly applied, solutions typically combine elements from both
inverse and forward methods, e.g., the articulated-body hybrid
dynamics algorithm described in Section 9.2 of [19].

The methods mentioned above do not apply for manipula-
tors with kinematic loops. Because of the complexity caused
by kinematic redundancy [11], actuation redundancy [50], and
uncertainty in constraint forces exerted by loop joints [19],
more sophisticated and expensive algorithms are required to
calculate their dynamics, which can be found in [57, 50]
and Chapter 8 of [19]. More sophisticated and expensive
algorithms are required to solve both inverse and forward
dynamics for parallel robots, which can be found in [19, 57].

There is rarely a single algorithm which can solve all
three types of dynamics problems. Different algorithms have
to be applied as described in Section 5.3, 6.2, 7.3 of [19].
Rodriguez [58, 57] built a unified framework based on the
concept of filtering and smoothing to solve both inverse and

forward dynamics, and such method can also be applied to
closed kinematic loops dynamics as claimed in [59]. Different
algorithms have to be designed and implemented, though they
share a unified framework. Based on the work by Rodriguez
et al. [60], Jain [34] analyzed various algorithms for serial
chain dynamics in a unified formulation. Ascher et al. [3]
unified the derivation of CRBA and ABA as two elimination
methods which are used to solve forward dynamics. Different
algorithms have to be designed for each type [19], and they are
not easy to be explained in an intuitive way. Rodriguez [58]
used a random field estimation approach to solve both inverse
and forward dynamics problems, which builds parallelism
between the concepts of estimation used in Kalman filtering
and smoothing theory and the dynamics problems. However,
the parallelism is not straightforward and easy to visualize.
Even though it is claimed in [57] that the same method can
be used to solve dynamics for manipulators involving closed
kinematic loop, non-trivial modifications have to be made for
this method to be applied.

In this paper we introduce factor graphs as a unifying lan-
guage in which to explain the classical dynamics algorithms,
and present new algorithms derived from the graph theory
underpinning sparse linear systems. Our contributions are:

• a unified method which can solve inverse, forward and
hybrid dynamics for either kinematic chains or loops;

• a factor graph representation for dynamics problems,
which is a insightful visualization of the underlying
equations;

• the discovery of new dynamics algorithms corresponding
to different elimination orderings in those graphs.

Note that graphical models in general have been used before
in robotic dynamics, e.g., Ting et al. [66] used Bayes networks
to model system identification of rigid body parameters from
noisy data. Factor graphs have also been used in walking
robots by at least two different groups [32, 31, 68], but without
explicit modeling of dynamical quantities as we do below.

We are also not the first ones to exploit order-
ing/permutations of matrices to improve performance: sparse
linear algebra was already exploited very early on in [54]
and is still being re-discovered regularly, e.g. [52]. Rather,
the factor graph approach exposes a very general view on
these problems and exposes elimination ordering in a much
clearer way than typical sparse linear algebra methods, and
opens up the possibility of adding non-linearities into the same
framework. Finally, the eliminated DAGs (Section IV) point
the way to automatically generating code corresponding to a
topological ordering of the corresponding DAG.



V0

V̇0

θ1

θ̇1 θ̈1

V1

V̇1

F1

τ1

θ2

θ̇2 θ̈2

V2

V̇2

F2

τ2

θ3

θ̇3 θ̈3

V3

V̇3

F3

τ3

θ4

θ̇4 θ̈4

V4

V̇4

F4

τ4

θ5

θ̇5 θ̈5

V5

V̇5

F5

τ5

θ6

θ̇6 θ̈6

V6

V̇6

F6

τ6

F t

Prior Factor:
base twist

Prior Factor:
base acceleration

Twist Factor: Vi − [AdTi,i−1(θi)]Vi−1 −Aiθ̇i = 0

Acceleration Factor:
V̇i − [AdTi,i−1(θi)]V̇i−1 −Aiθ̈i − [adVi ]Aiθ̇i = 0

Wrench Factor:
AdTTi+1,i(θi+1)

Fi+1 −Fi + GiV̇i − [adVi ]
TGiVi = 0

Torque Factor:
(Fi)TAi − τi = 0

Prior Factor:
tool wrench

Fig. 1: The Puma 560 dynamics factor graph, where black dots represent factors, and circles represent variables.

II. REVIEW OF MANIPULATOR DYNAMICS

Below we review the modern geometric view on framing
robot dynamics, and follow the exposition and notation from
the recent text by Lynch and Park [44]. As convincingly
argued in their introduction, this geometric view pioneered
by Brockett [9] and Murray et al. [49], unlocks the powerful
tools of modern differential geometry to reason about robot
dynamics. It will also help below in describing the various
dynamics algorithms in a concise graphical representation.

Traditionally, the Newton-Euler equations of motion for a
rigid body moving in space subjects to external forces f and
torques τ , can be expressed in body coordinates as (Equations
8.22 and 8.23 on page 242 in [44]),

fb = mv̇b + ωb ×mvb (1)
τb = Ibω̇b + ωb × Ibωb (2)

with m, Ib, vb, and ωb respectively the mass, inertia, linear
and angular velocity expressed in body coordinate frame.

In the geometric view, we combine equations (1) and (2)
to obtain an equation in terms of the six-dimensional body
wrench Fb and body twist Vb quantities (Equation 8.40 on
page 247 of [44]),

Fb = GbV̇b − [adVb ]
TGbVb (3)

where the new quantities are defined as

Vb =
[
ωb
vb

]
Fb =

[
τb
fb

]
Gb =

[
Ib 0
0 mI

]
[adVb ] =

[
[ωb] 0
[vb] [ωb]

]
Above [ωb] is the skew-symmetric matrix formed from ωb, i.e.,

[ωb] = RT Ṙ

with R ∈ SO(3) the rotation associated with a link.
Closely following Section 8.3 in [44], applying this to the

links of a serial manipulator and taking into account the

constraints at the joints, we obtain four equations relating
both link and joint quantities. In particular, the twist and
acceleration Vi and V̇i for the i-th link are expressed in a
body-fixed coordinate frame rigidly attached to the link. The
wrench transmitted through joint i is denoted as Fi, and Gi is
the link’s inertia matrix. Without loss of generality, below we
assume all rotational joints, and we then have:

Vi − [AdTi,i−1(θi)]Vi−1 −Aiθ̇i = 0 (4)

V̇i − [AdTi,i−1(θi)]V̇i−1 −Aiθ̈i − [adVi ]Aiθ̇i = 0 (5)

AdTTi+1,i(θi+1)
Fi+1 −Fi + GiV̇i − [adVi ]

TGiVi = 0 (6)

FTi Ai − τi = 0 (7)

where Ai is the screw axis for joint i (expressed in link i),
and AdTi,i−1(θi) is the adjoint transformation associated with
the transform Ti,i−1 between the links (a function of θi).

The four equations 4-7 express the dynamic constraints
between link i and link i − 1 imposed by joint i: (4)
describes the relationship between twist Vi and twist Vi−1,
where θ̇i is the angular velocity of joint i; (5) describes the
constraint between acceleration V̇i of and acceleration V̇i+1,
which involves components due to joint acceleration θ̈i and
the acceleration caused by rotation; (6) describes the balance
between the wrench Fi through joint i and the wrench Fi+1

applied through joint i+1; (7) describes that the torque applied
at joint i equals to the projection of wrench Fi on the screw
axis Ai corresponding to joint i.

Gravity is not considered above but can easily be accounted
for. Lynch & Park [44] describe a standard ”trick” that adds
an extra acceleration term to the base. While clever, we have
found it more intuitive to explicitly deal with gravity in our
implementation, where we simply add a gravity term to the
wrench equation (6), expressed in each link’s body frame.



Fig. 2: The PUMA 560 robot [2].

III. A FACTOR GRAPH APPROACH

A. Factor Graphs

A factor graph [15] is a graphical model that can be used
to describe the structure of sparse computational problems.
It is used in constraint satisfaction [61, 23, 13], AI [55, 62,
38, 24, 37], sparse linear algebra [26, 29, 33], information
theory [64, 42], combinatorial optimization [6, 5, 7], and
even query theory [4, 17, 30]. A general theory specified
in terms of algebraic semirings was also developed [10],
and seminal work in theory proved essential computational
complexity results [39] based on the existence of separator
theorems for certain classes of graphs [40]. Factor graphs
have been successfully applied in other areas of robotics, such
as SLAM [36, 35, 15, 22], state estimation in humanoids [31],
and (kinematic) motion planning [16, 48, 45].

B. Dynamic Factor Graphs

A key idea is that we can use a factor graph to represent
the structure of the dynamics constraints (4)-(7) for a par-
ticular manipulator configuration. A factor graph consists of
factors and nodes, where factors correspond to the dynamics
constraints, and the nodes represent the variables in each
equation. Factors are only connected to the variable nodes
that are featured in the corresponding dynamics constraint,
revealing the sparsity structure of the system of dynamics
equations. Figure 1 illustrates this for the classical Puma
560 robot shown in Figure 2. Variables including twists Vi,
accelerations V̇i, wrenches Fi, joint angles qi, joint velocities
θ̇i, joint accelerations θ̈i, and torques τi. The repetitive sparse
structure of the 6R robot can be clearly observed.

The dynamics factor graph corresponding to all variables
and constraints can be simplified and used to solve the
different types of dynamics problems, i.e., inverse, forward,
and hybrid problems. We show this in detail in the three
following sections. However, due to space constraints, we use
a three link RRR example for the remainder of this paper.

Also, in all three problems, we typically assume that the
kinematic quantities qi and θ̇i are known for all joints. This in
turn allows us to solve for the twist variables Vi in advance.
In addition, we typically also assume that V̇0 and the end-
effector wrench Ft are given, as well. In the language of
graphical models it is common to denote known variables as

V0

V̇0

θ1

θ̇1 θ̈1

V1

V̇1

F1

τ1

θ2

θ̇2 θ̈2

V2

V̇2

F2

τ2

θ3

θ̇3 θ̈3

V3

V̇3

F3

τ3

F t

Fig. 3: Factor graph for a 3R robot configuration, with known
variables shown as square nodes.

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(a) (b)

Fig. 4: (a) Simplified inverse dynamics factor graph (b) Block-
sparse matrix corresponding to Fig. 4a

square nodes. This is illustrated in Fig. 3 for an RRR robot,
which will be the starting point for the sections below.

C. Automatic Transcription into a Factor Graph

The dynamic factor graphs for all results below are obtained
automatically by converting Unified Robot Description Format
(URDF) files programatically into an internal representation
that works with the GTSAM factor graph library [14, 15].
This process is relatively straightforward, and the code will
be released in the public domain. In essence, a bipartite graph
of joints and links is created, which is then transcribed into
joint-specific, link-specific, and joint-link interaction factors,
as shown in Figure 1. For parallel robots, which are not
supported by the URDF format out of the box, we provide
the ability to provided an amended URDF file with extra loop
closures, or parse a Spatial Data File (SDF) file. Instructions
for both formats are provided in the repository. To help with
reviewing, an anonymized version of the code is available on
https://anonymous.4open.science at this link.

IV. INVERSE DYNAMICS

In inverse dynamics, we are seeking the required joint
torques τi to realize the desired joint accelerations θ̈i. We
can construct a simplified, less cluttered, inverse dynamics
graph by simply omitting all known nodes, although they
remain as parameters in the factors they were connected to.
For the RRR example, the resulting graph is shown in Fig. 4a,
corresponding to the 9 linear constraints comprising the 3R
inverse dynamics problem.

http://sdformat.org/
https://anonymous.4open.science/r/3aa5296f-9aeb-498f-8909-c667741fc079/
https://anonymous.4open.science/r/3aa5296f-9aeb-498f-8909-c667741fc079/


V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(a) Eliminate all the τ .

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(b) Eliminate F1.

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(c) Eliminate all the F .

V̇1

F1

τ1

V̇2

F2

τ2

V̇3

F3

τ3

(d) Eliminate all the V̇ .

Fig. 5: Steps in the Elimination Algorithm.

A. Gaussian Elimination to a DAG

The Gaussian elimination algorithm to solve this set of
linear equations can be graphically understood as converting
the factor graph in Fig. 4a to a directed acyclic graph (DAG).
Just as a factor graph is the graphical embodiment of the
dynamics system, the DAG reveals the sparsity structure
resulting after Gaussian elimination of the dynamics equations.

Elimination proceeds one variable at a time, and expresses
that variable in terms of variables that will be eliminated
later. If more than one equation is involved, this will result
in new equations, i.e., factors, that can lead to so-called fill-in
in the corresponding sparse system of linear equations. This
graphical ”elimination game” was first developed in sparse
linear algebra [27, 29, 33], but is also used in probabilistic
inference, where the DAG represents a Bayes net [55], and in
sensor fusion problems in robotics [15].

We illustrate the elimination process in the 3R case for a
particular ordering in Fig. 5. The elimination is performed
in the order τ3 . . . τ1, F1 . . .F3, V̇3 . . . V̇1. Fig. 5a shows the
result of first eliminating the torques τi, where the arrows
show that the torques τi only depend on the corresponding
wrenches Fi. Fig. 5b shows the elimination of F1, which
results in a dependence of F1 on V̇1 and F2. After eliminating
all the wrenches, we get the result as shown in Fig. 5c. Finally,
we eliminate the all the twist accelerations V̇3 . . . V̇1, in that
order. After completing all these elimination steps, the inverse
dynamics factor graph in Fig. 4a is thereby converted to the
DAG as shown in Fig. 5d.

B. Solving Symbolically

Elimination can be done numerically or symbolically. A
symbolic elimination step can be very simple if only one equa-
tion is involved, or rather complicated if many equations are
involved. Hence, it it matters which variables are eliminated
first. For example, eliminating τ3 above is simply a matter of
rewriting (7)

FT3 A3 − τ3 = 0

Algorithm 1: Inverse dynamics corresponding to Fig. 5d.

1 V̇1 = [AdT1,0(θ1)]V0 + [adV1 ]A1θ̇1 +A1θ̈1 ;

2 V̇2 = [AdT2,1(θ2)] V̇1 + [adV2 ]A2θ̇2 +A2θ̈2 ;

3 V̇3 = [AdT3,2(θ3)] V̇2 + [adV3 ]A3θ̇3 +A3θ̈3 ;

4 F3 = AdTTt,3
Ft + G3 V̇3 − [adV3 ]

TG3V3 ;

5 F2 = AdTT3,2(θ3)
F3 + G2 V̇2 − [adV2 ]

TG2V2 ;

6 F1 = AdTT2,1(θ2)
F2 + G1 V̇1 − [adV1 ]

TG1V1 ;

7 τ1 = F1

TA1 ;

8 τ2 = F2

TA2 ;

9 τ3 = F3

TA3 ;

as τ3 = FT3 A3

However, if one were to eliminate F2 in Fig. 4a first, it would
involve three constraints (the number of factors attached to
F2) and five variables, leading to two new constraints in those
variables. That complexity will propagate to the rest of the
graph, i.e., creating (symbolic) fill-in.

After elimination, back-substitution in reverse elimination
order solves for the values of all intermediate quantities and
the desired torques. For the example ordering, this corre-
sponding to the chosen order above first computes the 6-
dimensional twists accelerations V̇i, link wrenches Fi, and
then the scalar torques. The back-substitution sequence corre-
sponding to Fig. 5d can be written down as an algorithm. The
resulting algorithm for the 3R case and the chosen ordering is
shown above as Algorithm 1.

The above exactly matches the forward-backward path used
by the recursive Newton-Euler algorithm (RNEA) [43]. The
resulting DAG can be viewed as a graphical representation
of RNEA, where the green and blue/orange colors resp.
correspond to the forward path and the backward path.

C. Solving Numerically

However, we can also construct these factor graphs on
the fly, for arbitrary robot configurations, and solve them
numerically. The symbolic elimination leads to very fast hard-
coded dynamics algorithms, but have to be re-derived for
every configuration. The numerical approach is exactly what
underlies sparse linear algebra solvers, and can be extended
to deal with over-constrained least-squares problems, in which
the elimination algorithm corresponds to QR factorization.

For an arbitrary configuration, the numerical elimination (in
arbitrary order) corresponds to a blocked Gaussian elimination
where most blocks are 6×6, except where the (scalar) torques
τi are concerned. For example, Fig 4b shows the sparse block-
matrix corresponding to the simplified 3R inverse dynamics
graph in Fig. 4a. Every row in that matrix is associated
with a factor in the graph, and every column with a variable
node. After elimination, back-substitution corresponding to the



TABLE I: Numerical inverse dynamics for a PUMA 560

Elimination Method Average Time(µs)
RNEA 26.6

RNEA in RBDL 20.2
COLAMD 11.0

ND 11.7

chosen order above first computes the 6-dimensional twists
accelerations V̇i, link wrenches Fi, and then the scalar torques.

As already hinted at above, the cost of elimination on a fac-
tor graph can vary dramatically for different variable orderings,
since different orderings lead to different DAG topologies. The
amount of fill-in in turn affects the computational complexity
of the elimination and back-substitution algorithms [15]. Un-
fortunately, finding an optimal ordering is NP-complete and
already intractable for a 6R robot, so ordering heuristics are
used. Table I shows that the RNEA ordering as discussed
in Lynch & Park is apparently outperformed by the custom
implementation in RBDL [21]. This is in turn outperformed
by COLAMD [1] and nested dissection (ND) [25], which are
two state of the art sparse linear algebra ordering heuristics.

The reported results were obtained using GTSAM [14], a
general factor graph solver used extensively in the robotics
community. However, we make no claim that these results
in any way come close to dedicated dynamics solvers, and
they are intended to indicate relative performance rather than
claiming SOA absolute performance. GTSAM is a very gen-
eral library which is optimized towards much larger prob-
lems. In addition, once an ordering is chosen we should be
able to perform symbolic elimination only once, rather than
doing it every time as in our results. As alluded to above,
in future work we plan to automatically generate code for
particular robot topologies, which we hypothesize will match
and possibly exceed existing solvers when using non-intuitive
but computationally more advantageous elimination orderings.

D. The Space of all Inverse Dynamics Algorithms

Given all of the above, it is clear that the underlying graph
theory formalizes the existence of an entire space of possible
inverse dynamics algorithms: for every of the (intractably
many) possible variable orderings, we have both a numerical
and a symbolic variant. In theory, given enough time, we can
exhaustively search all orderings for a given configuration and
the generate a hard-coded algorithm that is optimal for that
configuration.

V. FORWARD DYNAMICS

In traditional expositions the forward dynamics problem
cannot be solved as neatly as the relatively easy inverse
dynamics problem. In the forward case we are seeking the joint
accelerations θ̈ when given θ, θ̇, and τ . Similar to the inverse
dynamics factor graph, we can simplify forward dynamics
factor graph as shown in Fig. 6a.

θ̈1

V̇1

F1

θ̈2

V̇2

F2

θ̈3

V̇3

F3

(a) (b)

Fig. 6: (a) Simplified forward dynamics graph and (b) corre-
sponding block-sparse matrix.

TABLE II: Numerical forward dynamics for a PUMA 560

Elimination Method Average Time(µs)
CRBA 51.8
ABA 25.5

COLAMD 11.2
ND 12.1

A. Solving Symbolically

In very much the same spirit as our work, Ascher et al. [3]
showed that two of the most widely used forward algorithms,
CRBA [20] and ABA [18], can be explained as two different
elimination methods to solve the same linear system.

In our framework, CRBA and ABA can additionally be
visualized as two different DAGs resulting from solving for-
ward dynamics factor graph with two different elimination
orders shown in Fig. 7a and Fig. 7b. CRBA can be explained
as first eliminating all the wrenches Fi, then eliminating all
the accelerations V̇i, and lastly eliminating all the angular
accelerations θ̈i. In contrast, in ABA we alternate eliminating
the wrenches Fi, accelerations V̇i and angular accelerations
θ̈i for i ∈ n . . . 1. The resulting DAGs can be viewed as
graphical representations of CRBA and ABA, and for a given
robot configuration, a custom back-substitution program can
be written out in reverse elimination order.

The forward dynamics problem is usually more complicated
than the inverse dynamics problem, and hence there are more
edges in the corresponding DAGs. However, better elimination
orders lead to better algorithms in terms of operation counts.
Indeed, different elimination orderings result in different fill-
in, and an ordering with minimum fill-in minimizes the cost
of the elimination algorithm![15]. For example, from Figures
7a and 7b we can see that there are more edges in the CRBA
DAG than in the ABA DAG, which means more computation
is required using CRBA. This was already remarked upon by
Ascher et al. [3], but in the graphical framework we can tell
this directly by observing the DAG.

B. Solving Numerically

Forward dynamics for arbitrary robot configurations can be
solved by constructing the factor graphs on the fly and solving
them numerically, using a sparse solver such as GTSAM [14].
Similarly to the inverse case, we can use different variable
ordering heuristics to explore the computational complexity of



V̇1

F1

θ̈1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(a) CRBA ordering.

V̇1

F1

θ̈1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(b) ABA ordering.

V̇1

F1

θ̈1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(c) COLAMD ordering.

V̇1

F1

θ̈1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(d) ND ordering.

Fig. 7: DAGs generated by solving forward dynamics factor graph with different variable elimination orderings.

V0

V̇0

θ1

θ̇1 θ̈1

V1

V̇1

F1

τ1

θ2

θ̇2 θ̈2

V2

V̇2

F2

τ2

θ3

θ̇3 θ̈3

V3

V̇3

F3

τ3

F t

Fig. 8: Hybrid dynamics factor graph for a 3R robot.

V̇1

F1

τ1

θ̈2

V̇2

F2

θ̈3

V̇3

F3

(a) (b)

Fig. 9: (a) Simplified hybrid dynamics graph and (b) corre-
sponding block-sparse.

each scheme. In Table II we report on four different orderings,
applied to the PUMA 650 configuration, and we can see that
ABA indeed outperforms CRBA in this case. However, the
two sparse linear algebra ordering heuristics COLAMD and
ND outperform both, by yet another factor of two or more.

VI. HYBRID DYNAMICS

In hybrid dynamics problems, either θ̈i or τi(t) at each joint
are given, and the task is to obtain the unknown accelerations
and torques. To solve this problem, Featherstone introduced
a hybrid dynamics algorithm in Section 9.2 of [19], where
the set of joints for with the torques given but accelerations
are unknown is denoted as ”forward-dynamics joints”, and the
others are denoted as ”inverse-dynamics joints”.

A. Featherstone’s method

Solving the hybrid dynamics using Featherstone’s algorithm
can be illustrated with factor graphs using a simple 3R

V̇1

F1

τ1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(a) MD ordering.

V̇1

F1

τ1

V̇2

F2

θ̈2

V̇3

F3

θ̈3

(b) Custom ordering.

Fig. 10: DAGs from solving hybrid dynamics factor graph.

example. Fig. 8 shows a factor graph for the case when τ1
is unknown while θ̈1 is given, and additionally θ̈2 and θ̈3 are
unknown while τ2 and τ3 are given. For this combination of
given and unknown values, the hybrid dynamics factor graph
can be simplified to Fig. 9a.
• Inverse Dynamics (Zero Acceleration Torques): Set
θ̈i as known variables, where the values are the desired
accelerations for i = 1, and the values are zeros for
i = 2 and 3; Set τi as known variables for i = 2 and 3,
where the values are given; Calculate τ1 with the inverse
dynamics factor graph.

• Forward Dynamics: Set τi as known, where the values
are from zero acceleration torques for i = 1, and the
values for i = 2 and 3 are as given; Calculate θ̈i for
i = 2 and 3 with the forward dynamics factor graph.

• Inverse Dynamics: Set θ̈i to be known variables, where
the values are as given for i = 1, and the values are from
the last step for i = 2 to 3; Calculate τ1 with the inverse
dynamics factor graph.

B. Using elimination in a Factor Graph

It is not necessary to solve inverse and forward dynamics
multiple times, because both forward-dynamics joints and
inverse-dynamics joints can be solved simultaneously with the
hybrid dynamics factor graph in Fig. 8. Using an elimination
variable ordering generated by a minimum degree (MD)
heuristic shown in Table III, the resulting DAG obtained is
shown in Fig. 10a. For good measure, we also eliminated the
factor graph with another, manually created elimination order
listed as ”CUSTOM” in Table III, and show the corresponding
DAG in Fig. 10b. The two DAGs are slightly different, but both
have the same number of directed edges and hence might be



TABLE III: Elimination Orders for Hybrid Dynamics

Elimination Method Elimination Order
MD t1, a2, a3, V̇3,F1, V̇1,F2, V̇2,F3

CUSTOM t1, a2, a3,F1, V̇1, V̇3,F3, V̇2,F2

End effector

Link 2

Link 4

Link 1

Base

Link 3

Closed 
loop

Fig. 11: Five-bar parallel manipulator (adapted from [56]).
The bottom 2 joints are actuated but other joints move freely.

suspected to have the same computational complexity.
However, especially for hybrid problems like this, being

sophisticated about variable ordering and the possible result-
ing parallelism could yield large dividends. An important
step forward in the understanding and analysis of variable
elimination on graphs was the discovery of clique trees, that
make the inherent parallelism in the elimination algorithm
explicit [41, 65, 8]. A clique tree or directed Bayes tree [35]
can be constructed from the DAG to guide parallel execution.
The complexity of the numerical elimination step depends
on the tree width, i.e., the size of the largest clique in the
tree. For example, the variable ordering associated with the
DAG in Fig. 10b splits the graph on the clique formed by
F2 and V̇2. By taking advantage of this parallelism, we can
solve this type of hybrid dynamics problem more efficiently.
Nested dissection (ND) algorithms [25] try to exploit this
by recursively partitioning the graph and returning a post-fix
notation of the partitioning tree as the ordering.

VII. DYNAMICS WITH CLOSED KINEMATIC LOOPS

As discussed in Chapter 8 of [19], for inverse dynamics, if a
manipulator with kinematic loop is redundantly actuated (the
number of actuated joints is greater than the degree of motion
freedom) there are infinitely many values of torque τ that
produce the same angular acceleration θ̈. If a unique solution
is required, one can either add more constraints or apply an
optimality criterion, which can be done by adding extra factors
to the graph. For example, minimum torque factors make the
solution unique by choosing the minimum torque values. For
forward dynamics, if a manipulator with kinematic loop is
overconstrained (for example, any system containing planar
kinematic loops), the constraint forces exerted by loop joints
are underdetermined. We can convert this overconstrained

system to be properly constrained if possible, for example,
by replacing the original loop joint with a joint that imposes
less constraints. With factor graphs, this can be done by adding
a planar factor at the loop joint which reduces the number of
unknown constraint forces so it can be properly solved.

We use a five-bar parallel manipulator as shown in Fig. 11
to illustrate how to solve kinematic loops with factor graphs.
This manipulator is properly actuated, since only joints 1
and 2 are actuated, and other joints are free to rotate. Joint
5 closes the loop. Link 0 represent the base link, which
is fixed, and the end-effector is attached to link 2. Since
the kinematic loop in this manipulator is planar, we add a
planar factor to the dynamics factor graph at the loop joint
as shown in Fig. 12, where the planar factor is shown as a
unary factor associated with wrench F5, which is the unknown
constraint wrench exerted by the loop joint. With the closed
loop dynamics factor graph, we can solve inverse, forward and
hybrid dynamics problems by specifying which variables are
known and which are unknown. We can solve this factor graph
with any elimination ordering, and the resulting DAGs can be
taken as graphical representations for different algorithms to
solve closed-loop problems.

VIII. DISCUSSION

In this paper, we represent manipulator dynamics as factor
graph and solve for inverse, forward, and hybrid problems.
Using factor graphs as a graphical language gives us not
only a unified method to solve all types of dynamics prob-
lems, but also an insightful visualization of the underlying
mathematical formulations. Exploiting different elimination
orders of solving the factor graph unlocks powerful tools
to illustrate classical algorithms and derive novel algorithms
which could be applied to solve certain types of dynamics
problems efficiently.

As we discussed Section IV, the reported timing results are
in now way intended to compete with dedicated dynamics
solvers, but rather indicated relative performance. In future
work we plan to automatically generate code for particular
robot topologies, which we hypothesize will match and pos-
sibly exceed existing solvers when using non-intuitive but
computationally more advantageous elimination orderings. We
are also aware that in comparing high performance code con-
trolling for cache effects and memory architecture in general
is important, as done by Neuman et al. [51].

In future work, we hope to apply these findings to perform
kinodynamic motion planning in the style of GPMP2 [47] and
STEAP [46], which successfully applied incremental infer-
ence in factor graphs [35, 15] to kinematic motion planning
problems. In addition, it would be very interesting to use the
factor-graph-based representation of dynamics to perform state
estimation for dynamically balanced robots, in the spirit of
Hartley et al. [32, 31] and Wisth et al. [68].



V0V̇0

θ1θ̇1

θ̈1

V1V̇1F1τ1

θ2θ̇2

θ̈2

V2V̇2F2τ2

F t

θ3θ̇3

θ̈3

V3V̇3F3τ3

θ4θ̇4

θ̈4

V4V̇4F4τ4

θ5θ̇5

θ̈5

F5 τ5

Loop Acceleration Factor

Loop Twist Factor

Loop Wrench Factor

Planar Factor

Fig. 12: Five-bar parallel manipulator dynamics factor graph, where black dots represent variable constraints, namely factors,
and circles represent variable nodes.

REFERENCES

[1] P.R. Amestoy, T. Davis, and I.S. Duff. An approximate
minimum degree ordering algorithm. SIAM Journal on
Matrix Analysis and Applications, 17(4):886–905, 1996.

[2] B. Armstrong, O. Khatib, and J. Burdick. The explicit
dynamic model and inertial parameters of the puma 560
arm. In Proceedings. 1986 IEEE international conference
on robotics and automation, volume 3, pages 510–518.
IEEE, 1986.

[3] U. M. Ascher, P. K. Dinesh, and B. P. Cloutier. For-
ward dynamics, elimination methods, and formulation
stiffness in robot simulation. The International Journal
of Robotics Research, 16(6):749–758, 1997.

[4] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman,
and M. Yannakakis. Properties of acyclic database
schemes. In ACM Symp. on Theory of Computing
(STOC), pages 355–362, New York, NY, USA, 1981.
ACM Press.

[5] U. Bertele and F. Brioschi. On the theory of the
elimination process. J. Math. Anal. Appl., (1):48–57,
July.

[6] U. Bertele and F. Brioschi. Nonserial Dynamic Program-
ming. Academic Press, 1972.

[7] U. Bertele and F. Brioschi. On nonserial dynamic

programming. J. Combinatorial Theory, 14:137–148,
1973.

[8] J.R.S. Blair and B.W. Peyton. An introduction to chordal
graphs and clique trees. In George et al. [28], pages 1–27.

[9] W. Roger Brockett. Robotic manipulators and the product
of exponentials formula. In Mathematical theory of
networks and systems, pages 120–129. Springer, 1984.

[10] B. A. Carré. An algebra for network routing problems.
J. Inst. Math. Appl., 7:273–294, 1971.

[11] S. Chiaverini, G. Oriolo, and I. D. Walker. Kinematically
redundant manipulators. Springer handbook of robotics,
pages 245–268, 2008.

[12] J. J Craig. Introduction to robotics: mechanics and
control, 3/E. Pearson Education India, 2009.

[13] R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems. Artificial Intelligence,
34(1):1–38, December 1987.

[14] F. Dellaert. Factor graphs and GTSAM: A hands-on
introduction. Technical Report GT-RIM-CP&R-2012-
002, Georgia Institute of Technology, 2012.

[15] F. Dellaert and M. Kaess. Factor graphs for robot
perception. Foundations and Trends in Robotics, 6(1-
2):1–139, 2017.

[16] J. Dong, M. Mukadam, F. Dellaert, and B Boots. Mo-
tion planning as probabilistic inference using Gaussian



processes and factor graphs. In Robotics: Science and
Systems (RSS), 2016.

[17] R. Fagin, A.O. Mendelzon, and J.D. Ullman. A simplied
universal relation assumption and its properties. ACM
Trans. Database Syst., 7(3):343–360, 1982.

[18] R. Featherstone. The calculation of robot dynamics using
articulated-body inertias. The International Journal of
Robotics Research, 2(1):13–30, 1983.

[19] R. Featherstone. Rigid body dynamics algorithms.
Springer, 2014.

[20] R. Featherstone and D. E. Orin. Robot dynamics: equa-
tions and algorithms. In Proceedings 2000 ICRA. Mil-
lennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), volume 1, pages 826–834. IEEE, 2000.

[21] M. L. Felis. RBDL: An efficient rigid-body dynamics
library using recursive algorithms. Autonomous Robots,
41(2):495–511, 2017.

[22] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza.
On-manifold preintegration for real-time visual-inertial
odometry. IEEE Trans. Robotics, 2017.

[23] Eugene C. Freuder. A sufficient condition for backtrack-
free search. J. ACM, 29(1):24–32, 1982.

[24] B.J. Frey, F.R. Kschischang, H.-A. Loeliger, and
N. Wiberg. Factor graphs and algorithms. In Proc. 35th
Allerton Conf. Communications, Control, and Comput-
ing, pages 666–680, September 1997.

[25] A. George. Nested dissection of a regular finite element
mesh. SIAM Journal on Numerical Analysis, 10(2):345–
363, April 1973.

[26] A. George, J. Liu, and Ng E. Row-ordering schemes for
sparse Givens transformations. I. Bipartite graph model.
Linear Algebra Appl, 61:55–81, 1984.

[27] J.A. George, J.R. Gilbert, and J.W-H. Liu, editors. Graph
Theory and Sparse Matrix Computations, volume 56
of IMA Volumes in Mathematics and its Applications.
Springer-Verlag, 1993.

[28] J.A. George, J.R. Gilbert, and J.W-H. Liu, editors. Graph
Theory and Sparse Matrix Computations, volume 56
of IMA Volumes in Mathematics and its Applications.
Springer-Verlag, New York, 1993.

[29] J.R. Gilbert and E.G. Ng. Predicting structure in non-
symmetric sparse matrix factorizations. In George et al.
[28].

[30] N. Goodman and O. Shmueli. Tree queries: a simple
class of relational queries. ACM Trans. Database Syst.,
7(4):653–677, 1982.

[31] R. Hartley, M. G. Jadidi, L. Gan, J. Huang, J. W.
Grizzle, and R. M. Eustice. Hybrid contact preintegration
for visual-inertial-contact state estimation using factor
graphs. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3783–3790,
Oct 2018.

[32] R. Hartley, J. Mangelson, L. Gan, M. Ghaffari Jadidi,
J. M. Walls, R. M. Eustice, and J. W. Grizzle. Legged
robot state-estimation through combined forward kine-

matic and preintegrated contact factors. In 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pages 4422–4429, May 2018.

[33] P. Heggernes and P. Matstoms. Finding good column
orderings for sparse QR factorization. In Second SIAM
Conference on Sparse Matrices, 1996.

[34] A. Jain. Unified formulation of dynamics for serial rigid
multibody systems. Journal of Guidance, Control, and
Dynamics, 14(3):531–542, 1991.

[35] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard,
and F. Dellaert. iSAM2: Incremental smoothing and
mapping using the Bayes tree. Intl. J. of Robotics
Research, 31:217–236, Feb 2012.

[36] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incre-
mental smoothing and mapping. IEEE Trans. Robotics,
24(6):1365–1378, Dec 2008.

[37] F.R. Kschischang, B.J. Frey, and H-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Trans.
Inform. Theory, 47(2), February 2001.

[38] S. L. Lauritzen and D. J. Spiegelhalter. Local com-
putations with probabilities on graphical structures and
their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological), 50(2):157–
224, 1988.

[39] R.J. Lipton, D.J. Rose, and R.E. Tarjan. Generalized
nested dissection. SIAM Journal on Applied Mathemat-
ics, 16(2):346–358, 1979.

[40] R.J. Lipton and R.E. Tarjan. A separator theorem for
planar graphs. SIAM Journal on Applied Mathematics,
36(2):177–189, April 1979.

[41] J. W-H. Liu and A. Mirzaian. A linear reordering
algorithm for parallel pivoting of chordal graphs. SIAM
J. Disc. Math., 2:lOO–107, 1989.

[42] H.-A. Loeliger. An introduction to factor graphs. IEEE
Signal Processing Magazine, pages 28–41, January 2004.

[43] J. Y. S. Luh, M. W. Walker, and R. P. Paul. On-
line computational scheme for mechanical manipulators.
Journal of Dynamic Systems, Measurement, and Control,
102(2):69–76, 1980.

[44] K. M Lynch and F. C Park. Modern Robotics. Cambridge
University Press, 2017.

[45] M. Mukadam, J. Dong, F. Dellaert, and B. Boots. Simul-
taneous trajectory estimation and planning via probabilis-
tic inference. In Robotics: Science and Systems (RSS),
2017.

[46] M. Mukadam, J. Dong, F. Dellaert, and B. Boots. Steap:
simultaneous trajectory estimation and planning. Au-
tonomous Robots, pages 1–20, 2018.

[47] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots.
Continuous-time gaussian process motion planning via
probabilistic inference. Intl. J. of Robotics Research,
37(11):1319–1340, 2018.

[48] M. Mukadam, X. Yan, and B. Boots. Gaussian process
motion planning. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2016.

[49] R.M. Murray, Z. Li, and S. Sastry. A Mathematical



Introduction to Robotic Manipulation. CRC Press, 1994.
[50] Y. Nakamura and M. Ghodoussi. Dynamics computation

of closed-link robot mechanisms with nonredundant and
redundant actuators. IEEE Transactions on Robotics and
Automation, 5(3):294–302, 1989.

[51] S. M. Neuman, T. Koolen, J. Drean, J. E. Miller, and
S. Devadas. Benchmarking and workload analysis of
robot dynamics algorithms. In 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 5235–5242, Nov 2019.

[52] F. Nori. Inverse, forward and other dynamic compu-
tations computationally optimized with sparse matrix
factorizations. In 2017 IEEE International Conference
on Real-time Computing and Robotics (RCAR), pages
371–377, July 2017.

[53] D. E. Orin, R. McGhee, M. Vukobratovi, and G. Har-
toch. Kinematic and kinetic analysis of open-chain
linkages utilizing newton-euler methods. Mathematical
Biosciences, 43(1-2):107–130, 1979.

[54] N Orlandea and DA Calahan. A sparsity-oriented ap-
proach to the design of mechanical systems. Problem
Analysis in Science and Engineering, pages 361–389,
1977.

[55] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

[56] Reddit Robotics. 5-bar parallel manipulator.
[57] G. Rodriguez. Recursive forward dynamics for two

robot arms in a closed chain based on kalman filtering
and bryson-frazier smoothing. In Proceedings of the
International Symposium on Robot Manipulators on Re-
cent trends in robotics: modeling, control and education,
pages 85–93. Elsevier North-Holland, Inc., 1986.

[58] G. Rodriguez. Kalman filtering, smoothing, and recursive
robot arm forward and inverse dynamics. IEEE Journal
on Robotics and Automation, 3(6):624–639, 1987.

[59] G. Rodriguez. Recursive forward dynamics for multiple
robot arms moving a common task object. IEEE Transac-
tions on Robotics and Automation, 5(4):510–521, 1989.

[60] G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A
spatial operator algebra for manipulator modeling and
control. The International Journal of Robotics Research,
10(4):371–381, 1991.

[61] R. Seidel. A new method for solving constraint satisfac-
tion problems. In Intl. Joint Conf. on AI (IJCAI), pages
338–342, 1981.

[62] P. P. Shenoy and G. Shafer. Propagating belief functions
using local computations,. IEEE Expert, 1(3):43–52, Fall
1986.

[63] Y. Stepanenko and M. Vukobratovi. Dynamics of ar-
ticulated open-chain active mechanisms. Mathematical
Biosciences, 28(1-2):137–170, 1976.

[64] R. Tanner. A recursive approach to low complexity codes.
IEEE Trans. Inform. Theory, 27(5):533–547, Spetember
1981.

[65] R.E. Tarjan and M. Yannakakis. Simple linear-time

algorithms to test chordality of graphs, test acyclicity of
hypergraphs and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13(3):566–579, 1984.

[66] J-A Ting, M. Mistry, J. Peters, S. Schaal, and J. Nakan-
ishi. A bayesian approach to nonlinear parameter iden-
tification for rigid body dynamics. In Robotics: Science
and Systems, pages 32–39. Philadelphia, USA, 2006.

[67] M. W. Walker and D. E. Orin. Efficient dynamic com-
puter simulation of robotic mechanisms. Journal of Dy-
namic Systems, Measurement, and Control, 104(3):205–
211, 1982.

[68] D. Wisth, M. Camurri, and M. Fallon. Robust legged
robot state estimation using factor graph optimization.
IEEE Robotics and Automation Letters, 4(4):4507–4514,
Oct 2019.

https://www.reddit.com/r/robotics/comments/6fzwoo/in_the_fivebarlink_parallel_link_robot_joints/

	Introduction & Related Work
	Review of Manipulator Dynamics
	A Factor Graph Approach
	Factor Graphs
	Dynamic Factor Graphs
	Automatic Transcription into a Factor Graph

	Inverse Dynamics
	Gaussian Elimination to a DAG
	Solving Symbolically
	Solving Numerically
	The Space of all Inverse Dynamics Algorithms

	Forward Dynamics
	Solving Symbolically
	Solving Numerically

	Hybrid Dynamics
	Featherstone's method
	Using elimination in a Factor Graph

	Dynamics with Closed Kinematic Loops
	Discussion

