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Fig. 1. Robot seamlessly navigating cubbies using a geometric fabric that enables obstacle and joint limit avoidance, redundancy resolution, and goal reaching.

Abstract—This paper describes the pragmatic design and
construction of geometric fabrics for shaping a robot’s task-
independent nominal behavior, capturing behavioral components
such as obstacle avoidance, joint limit avoidance, redundancy
resolution, global navigation heuristics, etc. Geometric fabrics
constitute the most concrete incarnation of a new mathematical
formulation for reactive behavior called optimization fabrics.
Fabrics generalize recent work on Riemannian Motion Policies
(RMPs); they add provable stability guarantees and improve de-
sign consistency while promoting the intuitive acceleration-based
principles of modular design that make RMPs successful. We
describe a suite of mathematical modeling tools that practitioners
can employ in practice and demonstrate both how to mitigate
system complexity by constructing behaviors layer-wise and how
to employ these tools to design robust, strongly-generalizing,
policies that solve practical problems one would expect to find
in industry applications. Our system exhibits intelligent global
navigation behaviors expressed entirely as provably stable fabrics
with zero planning or state machine governance.

I. INTRODUCTION
Motion generation is one of the fundamental problems of

robotics. Fast, reactive motion is essential for most modern
tasks, especially in highly-dynamic and uncertain collaborative
environments. We describe here a set of tools built from
geometric fabrics, derived from our recent theory of optimiza-
tion fabrics (see Section III of supplemental paper [16]), for
the direct construction of stable robotic behavior in modular
parts.1 Fabrics define a nominal behavior independent of a spe-
cific task, capturing cross-task commonalities like joint-limit
avoidance, obstacle avoidance, and redundancy resolution, and
implement a task as an optimization problem across the fabric.
The fabric defines behavior by shaping the optimization path.

For instance, the goal of a given task may be to reach a
target point with the robot’s end-effector. En route, the system
should avoid obstacles and joint limits, resolve redundancy
intelligently, implement global navigation heuristics, and may

1The term fabric is used analogously to the term fabric of spacetime
from theoretical physics, but formalizes the idea as a second-order nonlinear
differential equation characterizing an unbiased nominal behavior.

even shape the end-effector path to approach the target from
a specific direction. The task is the optimization problem
characterizing the end-effector’s target as its local minimum;
the fabric captures everything else about the behavior we want
the robot to exhibit as it optimizes that objective.

The theory of fabrics was motivated by the empirical
success of Riemannian Motion Policies (RMPs) [15, 2] which
have been shown to demonstrate flexible robust performance
on real-world reactive and adaptive tasks. RMPs are intu-
itive. Designers can build behaviors as acceleration policies
on different spaces and provide velocity dependent weight
matrices defining how they should combine as metric weighted
averages. Unfortunately, they have no theoretical guarantees
of stability and empirically some care is needed to tune
them well so the contributing RMP terms don’t conflict with
one another. Fabrics, on the other hand, are fundamentally
unbiased in a rigorous sense (see Section III of supplemental
paper [16]), meaning practically that the underlying fabric does
not prevent the system from achieving task goals. And they
fundamentally engender asymptotic stability making them an
alluring framework for behavioral design.

Geometric fabrics are a special type of fabric that expresses
its unbiased nominal behavior as a generalized nonlinear
geometry in the robot’s configuration space; they constitute the
most concrete incarnation of optimization fabric and capture
many of intuitive properties that make RMPs so powerful,
such as acceleration-based policy design and independent pri-
ority metric specification. Similar to RMPs, geometric fabrics
can be conveniently constructed in parts distributed across a
transform tree of relevant task spaces. Importantly, they inherit
key theoretical properties from the theory of fabrics, including
stability and their unbiased behavior. Additionally, due to
their construction as nonlinear geometries of paths, geometric
fabrics exhibit a characteristic geometric consistency which
allows us both to construct them layer-wise to mitigate design
complexity and to independently control execution speed by
accelerate along the direction of motion without affecting the
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overall the behavior. Geometric fabrics capture RMP intuition
but with important gains from their theoretical foundation.

We will show that a wide range of robotic behavior can be
captured purely by its geometric fabric. We detail a pragmatic
collection of modeling tools derived from this framework,
and present experimental results on a Franka Panda robotic
manipulator fluently navigating furniture mimicking problems
common in logistics or industrial settings.

A. Related work

In [5] the authors observed that even systems built on
classical planning [7] or optimization [14, 10, 4] require
a layer of real-time reactive control leveraging techniques
like operational space control [6]. Research into Riemannian
Motion Policies (RMPs) [15, 2] built on these observations
and proposed a behavioral design framework, embedding
more globally aware behaviors into reactive control, powerful
enough to develop strongly-generalizing systems2 often cir-
cumventing standard planning architectures entirely.

Optimization fabrics (see Section III of supplemental pa-
per [16]) are the culmination of that line of work into a
comprehensive mathematical theory of behavioral design with
rigorous stability guarantees, and geometric fabrics are their
concrete incarnation. Earlier systems orchestrated RMPs in
system applications using complex state machines to skirt
the difficulty of designing nonlinear policies directly. These
limitations motivated work on learning highly nonlinear RMPs
from demonstration [13, 11, 9], but it proved challenging to
integrate policy learning with existing RMP systems.

A fundamental limitation of many techniques, such as
operational space control [6, 12], geometric control [1], and
geometric dynamical systems [2], which we now understand
as Lagrangian fabrics within the theory of fabrics, is that all of
those systems either have fundamentally limited expressivity
or they must express behavior through objective potentials
(excludes velocity dependence) which creates conflicting ob-
jectives. This observation suggests that the challenges of
incorporating learned RMPs stemmed from using the subclass
of classical mechanical systems (a form of Lagrangian fabric).
This paper studies the broader class of geometric fabric which
is provably more flexible, exhibits geometrical consistency
(speed-independence), and inherits rigorous stability guaran-
tees from the theory of fabrics.

II. PRELIMINARIES

Geometric fabrics build on the theory of spectral semi-
sprays (specs), which generalize the idea of modular second-
order differential equations first derived and used as Rie-
mannian Motion Policies (RMPs) in [15, 2]. Let C be the
d-dimensional configuration space of the robot. Throughout
this paper, we will use vector-notation describing elements
of a space in coordinates. Mapped task spaces x = φ(q)

2Strongly-generalizing system are systems designed and tested on a collec-
tion of validation examples that then perform robustly on an entire distribution
of problems.

are defined in coordinates3 denoting q ∈ C ⊂ Rd and
x ∈ X ⊂ Rn with Jacobian matrix J = ∂xφ, used in the
relations ẋ = Jq̇ and ẍ = Jq̈ + J̇q̇.

Natural-form specs (M, f)X represent equations of the form
M(x, ẋ)ẍ + f(x, ẋ) = 0, and their algebra derives from how
these equations sum and transform under ẍ = Jq̈ + J̇q̇.
Canonical-form specs (M,h)CX express standard acceleration-
form equation ẍ+h(x, ẋ) = 0 where h = M−1f . For robotics
applications we find it useful to additionally introduce a policy-
form spec [M, π]X to denote the solved acceleration policy
expression ẍ = −h(x, ẋ) = π(x, ẋ).

In practice, we usually construct a transform tree of task
spaces where the specs reside. Each directed edge of the tree
represents the differentiable map taking its parent (domain)
to its child (co-domain). Specs populating a transform tree
collectively represent a complete second-order differential
equation in parts, linking a given spec to the root via the chain
of differentiable maps encountered along the unique path to
the root. Denoting that composed map as x = φ(q) as above,
we can use the expressions ẋ = Jq̇ and ẍ = Jq̈+ J̇q̇ relating
velocities and accelerations in the task space to velocities
and accelerations in the root to derive a spec algebra that
defines both how specs combine on a single space and how
they transform backward across edges from child to parent
(see [2] for details). The tree implicitly represents a complete
differential equation at the root as a sum of the parts, computed
by recursive application of the spec algebra.

As in [2] second-order differential equations can easily be
executed on fully actuated robotic systems using standard
control techniques such as feedback linearization. For instance,
a straightforward method is to use policies as trajectory
generators (integrate forward integral curves) and follow those
in the physical system using PID control as in [18].

III. THEORETICAL DEVELOPMENT

Here we review some of the necessary background for
understanding geometric fabrics. We discuss the speed inde-
pendence of nonlinear geometries of paths and how we can
exploit that by energizing such geometries to conserve a type
of energy called a Finsler energy which, itself, has geometric
underpinnings. We then show how such energized geometries
can be used to give global stability characterizations through
a Hamiltonian much like in classical mechanics (the Hamilto-
nian can be used as a Lyapunov function).

Importantly, we note that these energized geometries can
be viewed in two complimentary ways which gives intuition
around how to use them in behavioral design. First, we can
view it as endowing the geometry with a priority metric
derived from the energy. Or second, and equivalently, since
each Finsler energy has its own associated geometry, we can
view it as bending that geometry into the shape of the desired
geometry using a zero work modification which preserves
its metric structure. This analysis shows that these energized

3The spec algebra defines covariant transforms, so the behavior is indepen-
dent of curvilinear changes of coordinates [8]. For notational simplicity, we
express our results a single choice of coordinates.



geometries (what we will see are geometric fabrics in the
next section) can be used to optimize potential functions;
later on, we show that potential functions can capture task
objectives and therefore, optimizing potential functions are
akin to solving task objectives while using the geometry to
shape the behavior along the way.

A. Generalized nonlinear geometries

A generalized nonlinear geometry is an acceleration pol-
icy ẍ = π(x, ẋ) for which π has a special homogeneity
property. We require that it be positively homogeneous of
degree 2 (HD2), which means that for any λ ≥ 0 we have
π(x, λẋ) = λ2π(x, ẋ). One can show that the HD2 property
ensures the differential equation is more than just a collection
of trajectories (its integral curves); it additionally has a path
consistency property whereby every integral curve starting
from a given position x0 with velocity ẋ0 = ηn̂ pointing in a
given direction n̂ (here η > 0) will follow the same path (see
discourse in supplemental [17]). In particular, any variant of
the differential equation of the form ẍ = π(x, ẋ)+α(t,x, ẋ)ẋ,
where α ∈ R, will have integral curves that trace out the same
paths as π. That geometric consistency property turns π into
a geometry of paths.

B. Finsler energies

A Finsler energy Le(x, ẋ) is a generalization of kinetic
energy from classical mechanics (the classical kinetic energy
K = 1

2 ẋ
TG(x)ẋ is a form of Finsler energy). Analogous to

the classical case, the Euler-Lagrange equation applied to a
Finsler energy defines an equation of motion Me(x, ẋ)ẍ +
fe(x, ẋ) = 0 where Me = ∂2ẋẋLe is the energy (or metric)
tensor and fe = ∂ẋxLeẋ − ∂xLe captures curvature terms
(Coriolis and centripetal forces in classical mechanics). This
equation matches the classical mechanical equations of motion
when Le = K, for which Me(x, ẋ) = G(x).

In geometric fabrics, the energy tensor defines the policy’s
priority metric and the curvature terms fe are used for stability.
Finsler energies are Lagrangians, Le(x, ẋ), that satisfy

1) Positivity: Le(x, ẋ) ≥ 0 with equality only for ẋ = 0.
2) Homogeneity: Le(x, ẋ) is positively homogenous of de-

gree 2 in ẋ; i.e. for λ ≥ 0 we have Le(x, λẋ) =
λ2Le(x, ẋ).

3) Energy tensor invertibility: Me = ∂2ẋẋLe is invertible.
The metric tensor Me(x, ẋ) is in general a function of velocity
as well as position, although the above homogeneity require-
ment enforces that Me depends only on the directionality
of the velocity (Me(x, ẋ) = Me(x, ̂̇x) for ẋ 6= 0) and not
the magnitude. This enables directionally dependent priority
matrices in Section VII from Finsler energies.

C. Energization

As previously discussed, any variant of the differential
equation of the form ẍ = π(x, ẋ) + α(t,x, ẋ)ẋ will have
integral curves that trace out the same paths as π (where π is
HD2). Given a particular Le(x, ẋ) with associated Me and fe

terms, ẍ = π(x, ẋ) +αẋ will conserve Le if α is designed as
(see Section IIIC of supplemental paper [16] for more details)

α = −(ẋTMeẋ)−1ẋT
[
−Meπ − fe

]
. (1)

Moreover, ẍ = π(x, ẋ) + αẋ can then be rewritten as

Meẍ + fe + Pe
[
−Meπ − fe

]
= 0, (2)

where Pe = MeRpe and Rpe = M−1e − ẋ ẋT

ẋTMeẋ
. As discussed

in Section IIIC of [16], ff = Pe
[
−Meπ− fe

]
is a zero-work

modification term, which means that ẋT ff = 0. We rewrite
(2) as Meẍ + fe + ff = 0. As previously stated, this system
will conserve Le, and therefore, its associated Hamiltonian,
He, will be conserved as well (i.e., Ḣe = 0).

D. Optimization

We can now optimize (minimize) a potential function ψ(x)
given the previous energy-conserving system with the forced
and damped variant,

Meẍ + fe + ff = −∂xψ −Bẋ, (3)

where B(x, ẋ) is positive definite. The total energy for this
system (acting as our Lyapunov function) is Hψe = He+ψ(x).
The time rate-of-change of the total energy is

Ḣψe = Ḣe + ψ̇ = ẋT
(
Meẍ + fe

)
+ ∂xψ

T ẋ (4)

= ẋT
(
Meẍ + fe + ∂xψ

)
. (5)

Rewriting our forced and damped system as ẍ = −M−1e (fe+
ff + ∂xψ + Bẋ) and substituting yields,

Ḣψe = ẋT
(
Me

(
−M−1e (fe + ff + ∂xψ + Bẋ)

)
+ fe + ∂xψ

)
= ẋT

(
− fe − ∂xψ −Bẋ + fe + ∂xψ

)
− ẋT ff

= −ẋTBẋ, (6)

where all terms cancel except for the damping term. When
B is strictly positive definite, the rate of change is strictly
negative for ẋ 6= 0. Since Hψe = He + ψ is lower bounded
and Ḣψe ≤ 0, we must have Ḣψe = −ẋTBẋ → 0 which
implies ẋ→ 0, and therefore, ẍ→ 0. Substituting ẋ = 0 and
ẍ = 0 into (3) yields ∂xψ = 0, indicating that the system has
come to rest at a minimum of ψ(x).

IV. GEOMETRIC FABRICS

Above we showed that because geometric equations define
collections of path, independent of speed, we can energize
them to conserve a given measure of Finsler energy (which in
turn endows them with a priority metric and can be viewed
as bending the corresponding Finsler geometry into the shape
of the given arbitrary geometric equation). Doing so creates
a theoretical context we can use to understand their global
properties: when forced by a potential function (and damped),
they are guaranteed to minimize the potential over the domain.



The geometry influences the optimization path4 (the system’s
local behavior), but its global stability is governed by the
overall convergence a local minimum of the potential function.

Together, these properties allow us to specify tasks using po-
tential functions (whose local minima describe task goals), and
separately construct any number of behaviors by shaping the
underlying geometry, while always maintaining convergence
guarantees. We call such energized geometries geometric fab-
rics. Geometric fabrics are a form of optimization fabric (see
Section III of supplemental paper [16]) which is the broader
term for this type of differential equation designed to induce
behavior by influencing the optimization path of a differential
optimizer. Here we describe pragmatically how to effectively
design the fabric to encode a desired behavior.

A forced geometric fabric is a collection of fabric terms
defined as pairs (Le, π)X of a Finsler energy Le(x, ẋ) and an
acceleration policy ẍ = π(x, ẋ). Geometric terms define the
fabric while forcing terms define the objective. A geometric
term is a term (Le, π2)X for which π2 is an HD2 geometry.
A forcing term is a term

(
Le,−M−1e ∂xψ

)
X which derives its

policy from a potential function. As shown in Section X, we
can optimize (minimize) this potential function when damping
the system. Fabric terms can be added to spaces of a transform
tree [2] for the modular design of composite behaviors.

Each fabric term defines a triple (Me, fe, π)X , where
Meẍ + fe = 0 derives from the Euler-Lagrange equation
applied to Le, which can be viewed as two specs, a policy spec
[Me, π]X and a natural energy spec (Me, fe)X . Geometric
fabric summation and pullback is, accordingly, defined in
terms of the algebra of these two constituent specs.

Geometric fabrics are unbiased and thereby never prevent a
system from reaching a local minimum of the objective. The
objective, therefore, encodes concrete task goals independent
of the fabric’s behavior. Additionally, geometric policies are
geometrically consistent speed-invariant geometry of paths,
which both simplifies the intuition on how they sum and
enables behavior-invariant execution speed control.

The design of a geometric fabric follows the intuition of
designing RMPs [15]. Policy specs [Me, π2]X model both a
desired behavior π2 and a priority matrix on that behavior
Me defining how it combines with other policies as a metric-
weighted average of parts. The spectrum of Me can assign
different weights to different directions in the space, and
both π2(x, ẋ) and Me(x, ẋ) have the flexibily of depend-
ing on both position x and velocity ẋ. Since Me is HD0
(see Section III-B), geometric terms remain geometric under
summation and pullback (e.g. the policy resulting from a
metric-weighted average of geometries is itself a geometry).
The energy spec (Me, fe)X of each fabric term is used
only to guarantee stability during execution (see Section VI).
Practitioners can, therefore, simply focus on designing the
behavior policy specs [Me, π2]X .

4The optimization path is the system trajectory generated when a fabric is
forced by the negative gradient of an objective.

V. EXPLOITING GEOMETRIES FOR SPEED REGULATION

As we did in Section III-C for energization, we will again
exploit the speed independence of these geometric paths,
this time to accelerate those energized systems along the
direction of motion to maintain a separate measure of desired
speed as faithfully as possible without violating the stability
constraints outlined in Section III-D (positive damping on
the energized system). Fundamentally, this involves using the
potential function to speed up by injecting energy into the
system and using the damping term to slow down when desired
by bleeding energy off. At times we can also explicitly inject
additional energy into the system (what we call boosting the
energy) as long as those energy injections are transient. For
instance, we can use energy boosting to speed the system from
rest quickly. By acting only along the direction of motion, the
damper will not change the geometric path.

Details of our speed control methodology are given in the
supplemental paper [16], but we review the framework here.
Let π0(x, ẋ) be a geometry, Me be its metric induced through
energization via Finsler energy Le, and ψ(x) be a forcing
potential. The speed of the forced system can be regulated
using an acceleration along the direction of motion αregẋ
using

ẍ = −M−1e ∂xψ(x) + π0(x, ẋ) + αregẋ. (7)

By Theorem III.18 of [16], as long as αreg < αLe where αLe
is the energization coefficient (see Equation 1), the system is
equivalent to the original energized system with strictly posi-
tive damping coefficient. This result can be derived simply by
using a velocity aligned damper −βẋ on the energized system
and rearranging the terms by collecting the energization term
and velocity damper together (both of which are accelerations
along the direction of motion). The above constraint then
derives from the original conditions required for stability.

VI. EXECUTION AND ALGORITHMS

Once the forced geometric fabric is designed, one can trans-
form it by accelerating and decelerating along the direction
of motion using the methodology outlined in Section V (see
also Section VII-C) to maintain a given measured of execution
energy (e.g. speed of the end-effector or joint speed through
the configuration space). The geometric consistency of the
fabric ensures the behavior remains consistent despite these
speed modulations. Many numerical integrators are appropri-
ate for integrating the final differential equation. We find Euler
(1ms time step) or fourth order Runge-Kutta (10ms time step)
exhibit a good trade-off between speed and accuracy.

In full, we design a system in three parts (using a transform
tree [2] of task spaces): (1) design the underlying behavioral
fabric, (2) add a driving potential to define task goals, (3)
design an execution energy for speed control.

Design of a forced geometric fabric:
(1) Construct a transform tree.
(2) Populate its nodes with fabric terms.
(3) Add execution energy specs to the tree as needed to
describe the execution energy we want to control.



Fig. 2. Forced geometric fabric based on a transform tree of task spaces with
four channels pass energies, policies, forcing policies, and execution energies.

Execution of the forced fabric with speed control:
(1) Forward pass: Populate the nodes with the current state
from the root to the leaves.
(2) Backward pass: Evaluate the specs and pull them to root in
separate channels, an energy channel for the geometric terms’
energy specs, a policy channel for the geometric terms’ policy
specs, an execution energy channel for the execution energy
specs, and a forcing policy channel for the forcing terms’
policy specs. Add the forcing term’s energy specs to the energy
channel.
(3) Use the four channels’ root results to calculate the final
desired acceleration using speed control.

Fig. 2 shows a transform tree of different spaces with four
differently colored channels pass energies, policies, forcing
policies, and execution energies backwards through the tree.

VII. CONCRETE DESIGN TOOLS

Geometric fabrics follow acceleration-based design princi-
ples captured in the original canonical-form RMPs [15]. As
described in Section IV, a geometric fabric is a pair (Le, π2)X
characterizing two specs, an energy spec and a geometry
spec. The energy spec captures stability information, while the
geometry spec captures behavior. Behavioral design focuses on
constructing the latter, using the class of HD2 geometries to
model π2 and deriving Me as the energy tensor from Le.

When geometric fabrics are summed
∑
i(L

(i)
e , π

(i)
2 )X , the

combined fabric’s geometry spec (capturing its behavior)∑
i(M

(i)
e , π

(i)
2 )X =

(
M̃e, π̃2

)
is a metric-weighted average of

the contributing geometries π̃2 =
(∑

iM
(i)
e

)−1∑
iM

(i)
e π

(i)
2 ,

prioritized by the total metric M̃e =
∑
iM

(i)
e . When pop-

ulating a transform tree, this intuitive combination rule is
applied recursively at each node. Designers need only focus
on intuitively creating modular acceleration policies (as HD2
geometries) in the different spaces and prioritizing them with
metric tensors (from Finsler energies).

A. Construction of HD2 Geometries

An HD2 geometry is a differential equation ẍ+h2(x, ẋ) =
0 where h2 is HD2 (see Section III-A), which we usu-
ally denote in policy form ẍ = −h2(x, ẋ) = π2(x, ẋ).
Constructing an HD2 geometry is straightforward given the
following rules of homogeneous functions: (1) a sum of HD2

functions is HD2; (2) multiplying homogeneous functions adds
their degrees (denoting an HDk function as fk, examples are
f2f0 = f2, f1f1 = f2, etc.). For instance, a simple way to
design an HD2 geometry is to choose an HD0 policy π0(x)
that depends only on position and form π2(x, ẋ) = ‖ẋ‖2π0(x)
by scaling it by ‖ẋ‖2. π0(x) can be chosen as the negative
gradient of a potential π0(x) = −∂xψ(x).

B. Acceleration-based Potentials

It is often most intuitive to design a geometric fabrics’
forcing potential as a forcing spec F = [Mf , πf ]X in policy
form so it’s treated intuitively as another acceleration policy
averaged into the final metric weighted average. This policy
πf must implicitly express a forcing potential ψf (x) whose
negative gradient is given by −∂xψf (x) = Mfπf . When
designing F , Mf and πf must remain theoretically compatible
in that sense. Following Appendix D.4 in [3], we advocate
choosing πf = −∇xψacc(x) where ψacc is a potential function
that is spherically symmetric around its global minimum
expressing the acceleration policy directly as its negative
gradient. Any metric Mf (x) is theoretically compatible if it is
also spherically symmetric around the same global minimum
point. Note that position-only metrics are Riemannian and
derive from Finsler energies of the form Le = 1

2 ẋ
TMf (x)ẋ.

C. Speed control

We follow the speed control methodology outlined in
Section V. Specifically, that entails using αreg = αηex −
βreg(x, ẋ) +αboost in ẍ = −M−1e ∂xψ(x) +π0(x, ẋ) +αregẋ
with βreg = sβ(x)B + B + max{0, αηex − αLe} B > 0 is
a (small) baseline damping, the B > B is a larger damping
coefficient for succinct convergence. The switch sβ(x) turns
on close to the target:

sβ(x) =
1

2

(
tanh

(
− αβ(‖x‖ − r)

)
+ 1
)

(8)

where αβ ∈ R+ is a gain defining the switching rate, and
r ∈ R+ is the radius where the switch is half-way engaged.
Denoting the desired execution energy as Lex,d

e , we use the
following policy for η

η =
1

2

(
tanh

(
− αη(Lex

e − Lex,d
e )− αshift

)
+ 1
)

(9)

where αη, αshift ∈ R+ adjust the rate and offset, respectively,
of the switch as an affine function of the speed (execution
energy) error. Finally, αboost is modeled as αboost = k η

(
1−

sβ(x)
)

1
‖ẋ‖+ε , where k ∈ R+ is a gain that directly sets the

desired level of acceleration, η (from above) sets αboost =
0 when the desired speed is achieved, and 1 − sβ(x) sets
αboost = 0 when the system is within the region of higher
damping. The normalization by ‖ẋ‖+ ε ensures that αboost is
directly applied along ˆ̇x with a very small positive value for ε
to ensure numerical stability. This overall design injects more
energy into the system when −αboost < αηex − αLe . Since
this injection occurs for finite time, the total system energy is
still bounded. The additional switches ensure that the system
is still subject to positive damping, guaranteeing convergence.



Fig. 3. Planar arm experiment results for Lagrangian and geometric fabrics,
where targets are marked as green stars, and the arm’s alpha transparency
ranges from light at the beginning of the trajectory to dark at the end.

VIII. PLANAR MANIPULATOR EXPERIMENTS

In this section, we present a set of controlled experiments
on a 3-dof planar arm to demonstrate the limitations of
Lagrangian fabrics (as discussed in Section I-A) and show
how geometric fabrics overcome them.

Lagrangian v.s. Geometric: Denoting Lagrangian fabric
terms as (Le, πl)X we design Lagrangian fabric acceleration
policies as πl = −∂xψ using acceleration-based potentials
ψ. The corresponding geometric fabric terms are (Le, πg)
where πg = ‖ẋ‖2πl, converting the position-only acceleration
policies of the Lagrangian fabric into HD2 geometries for
a geometric fabric simply by multiply by ‖ẋ‖2. Lagrangian
terms are actually all forcing terms per the categorization in
Section IV. In contrast, geometric fabric terms add to the
underlying fabric and are therefore inherently unbiased. Our
experiments consistently show that the Lagrangian forcing
terms can easily be tuned to compete with one another,
preventing convergence to the task goal. In contrast, when
converted to geometries, these same terms work collabora-
tively with one another to influence the optimization behavior
without affecting task convergence.

All task goals are point targets for the end-effector ex-
pressed as simple acceleration-based attractor potentials (see
Section VII-B). Our three experiments are to:

1) Reach toward a target close to an obstacle (we expect the
obstacle and task terms to conflict).

2) Reach toward a target in an “awkward” configuration
(we expect the redundancy resolution and task terms to
conflict).

3) Reach toward a target at an “extreme” configuration (we
expect the joint limit terms and task terms to conflict).

Figure 3 shows that in all cases, Lagrangian fabric (forcing)
terms conflict with the task (forcing) term preventing conver-
gence to the goal. In contrast, the analogous geometric fabrics
are fundamentally unbiased and enable task convergence while
still exhibiting the desired behavioral influence.

Below we describe each fabric term, focusing on describ-
ing their geometric fabric form; Lagrangian fabric terms are
derived simply by dropping the velocity scaling factor ‖ẋ‖2
using the relation πg = ‖ẋ‖2πl.

End-effector Attraction: The behavior for pulling the end-
effector toward a target is constructed as follows. The task
map is x = φ(q) = q−qd, where q, qd ∈ R2 are the current
and desired particle position in Euclidean space. The metric
is designed as

Gψ(x) = (m−m)e−(αm‖x‖)
2

I +mI. (10)

where m, m are the upper and lower isotropic masses,
respectively, and αm is a constant scalar. The acceleration-
based potential gradient is ∂qψ(x) = Mψ(x)∂qψ1(x), where

ψ1(x) = k

(
‖x‖+

1

αψ
log(1 + e−2αψ‖x‖

)
(11)

where k and and αψ are constant scalars. Since our task is to
ultimately reach our target location, this behavior is a forcing
geometric fabric term with π = −∂qψ1(x).

Circular Object Repulsion: Collision avoidance with re-
spect to a circular object is constructed as follows. The task
map is x = φ(q) = ‖q−qo‖

r − 1, where qo is the origin
of the circle and r is its radius. The metric is defined as
Gb(x, ẋ) = s(ẋ) kbx2 , where kb is a barrier gain and s(ẋ) is
a velocity-based switching function. Specifically, s(ẋ) = 1
if ẋ < 0 and s(ẋ) = 0, otherwise. The acceleration-
based potential gradient is ∂qψb(x) = Mb(x)∂qψ1,b(x) with
ψ1,b(x) = αb

2x8 , where αb is the barrier gain.
Limit Avoidance: To describe the joint limit avoidance

policy, we use two 1D task maps, x = φ(qj) = q̄j − qj ∈ R+

and x = φ(qj) = qj − q
j
∈ R+, for each joint to capture

the distance between the current joint position and its lower
and upper boundaries, respectively, where q̄j and q

j
are the

upper and lower limits of the jth joint. The 1D metric Gl
is defined as Gl(x, ẋ) = s(ẋ)λx , where s(ẋ) is a velocity-
based switching function. Specifically, s(ẋ) = 1 if ẋ < 0
and s(ẋ) = 0, otherwise. Effectively, this removes the effect
of the coordinate limit geometry once motion is orthogonal or
away from the limit. The acceleration-based potential gradient,
expressed as ∂qψl(x) = Ml(x)∂qψ1,l(x), is designed with

ψl(x) =
α1

x2
+ α2 log

(
e−α3(x−α4) + 1

)
(12)

where α1, α2, α3, and α4 are constant scalars.
Default Configuration: The task map for default configu-

ration policy is defined as x = φ(q) = q− q0, where q0 is a
nominal configuration, and it usually represents the robot “at
ready”. The metric Gdc is simply an identity matrix scaled by
a constant λdc, Gdc = λdcI . The acceleration-based potential
gradient is defined with Eq. 15.



Fig. 4. Five default configurations for the Franka arm.

Experiment Results: The end-effector attraction, default
configuration and joint limit avoidance are applied to all three
experiments, and obstacle avoidance is applied to the first
two experiments. The nominal default configuration in all
three experiments is [π2 ,−

π
2 ,−

π
2 ], where positive sign defines

counter clock-wise rotation, and vice versa. The upper and
lower joint limits for each joint are set as ±(π) in the first
two experiments and ±(π2 + 0.01) in the third experiment.

The experiment results are shown in Fig. 3, From the top
row to the bottom row, it shows the results of experiments 1
to 3. As seen in the left column, no target is reached with
Lagrangian fabrics due to the fighting potentials. As seen in
the right column, all three targets are reached with geometric
fabrics as shown in the right column.

IX. FRANKA ARM EXPERIMENTS

These experiments represent a global end-effector naviga-
tion problem common in many logistics, collaborative, and
industrial settings, wherein a robot must autonomously interact
with cubbies (bins). We demonstrate the effectiveness of the
layer-wise construction of a geometric fabric that enables the
robot to reach into and out of three sets of cubbies (see Fig. 1).
There are six reachable cubbies in front and two on either
side of the Franka arm. The length, width, and depth of each
cubby are 0.3 m. The following discusses the fabric layers,
where every new layer rests upon the previous, fixed layers,
mitigating design and tuning complexity.

A. Behavioral Layers

We construct the behavior in three layers: 1) global cross-
body navigation; 2) heuristic geometries for moving in and
out of cubbies; 3) collision avoidance. Layers 1 and 3 are
general and can be used in many contexts; Layer 2 is a
common heuristic, although implemented here using task
specific considerations. Each policy is an HD2 geometry of the
form ẍ = −‖ẋ‖2∂xψ(x). Policies are weighted by Me(x, ẋ)
from the Finsler energy, Le = ẋTG(x, ẋ)ẋ. ψ(x) and G(x, ẋ)
are defined as follows.

1) Layer 1: The first layer creates a baseline geometric
fabric designed for global, cross-body, point-to-point end-
effector navigation absent obstacles. We construct end-effector
attraction, joint limit avoidance, and default configuration
geometries (see Section VIII). Five separate default config-
urations are created to cover different regions of the robot
(see Fig 4). This behavior controls robot posture and resolves
manipulator redundancy.

2) Layer 2: This layer enables the end-effector to extract
from and enter into any cubby (ignoring collision).

Cubby Extraction: This uses two task maps that are the
distance between: 1) the end-effector and the front plane of
the cubby, y1 = φ1(x) = sgn ∗ ‖xf − x‖, sgn = −1 if the
end-effector is inside of the cubby, sgn = 1, otherwise, where
x,xf ∈ R3 are the end-effector position and its orthogonal
projection onto the front plane, respectively; and 2) the end-
effector and a line that is centered and orthogonal to the front
plane of the target cubby, y2 = φ2(x) = ‖xc − x‖, where
x,xc ∈ R3 are the end-effector position, and the closest point
on the line to the end-effector, where the line is orthogonal
and centered with the front plane. The priority metric is

Gw(x) = s(y1)
((
m−m

)
s(y2) +m

)
I. (13)

where s(y1) = 1 if y1 < 0.1 and s(y1) = 0, otherwise.
s(y2) = 0.5(tanh(αm(y2 − r)) + 1), m, m are the upper
and lower isotropic masses, respectively, and αm defines the
rate of transition between 0 and 1, while r = 0.15 offsets the
transition. Overall, the priority vanishes if the end-effector is
either more than 0.1m away from the front plane (outside of
the cubby) or within 0.15 m of the target cubby center line.
The potential function is the same as defined in Eq. 12.

Target Cubby Attraction: An additional target attraction
policy is used to help pull the end-effector inside a target
cubby. It is the same as the end-effector attraction used in
Layer 1, but with the priority metric defined as Eq. 13. Overall,
the priority remains zero until it enters a cylindrical region
aligned with the target cubby. The heightening priority funnels
motion into the cubby.

Way-Point Attraction: This term guides the arm to the
cubby opening by attracting to a point 0.15m ahead of the
front plane. The term generally matches the end-effector at-
traction term above, but with a different target and a switching
function on the metric disabling it once within the column of
the target cubby. Specifically, we make the following changes:
1) replace xt with xw in the task map, where xw ∈ R3 is
the way point position; 2) define the switching function with
the task map y2 = φ2(x) = ‖xc − x‖ as described in the
cubby extraction policy. Note this term guides the arm but, as
a geometric term, does not affect convergence to the target.

3) Layer 3: This layer enables cubby collision avoidance.
Cubby Collision: The task map is y = φc(x) which

captures the minimum distance between a point on the arm
and the cubby, where x in R3 is a designated collision point
on the robot. Denoting the closest point on the cubby as xc, we
use y = φc(x) = ‖xc−x‖ (ignoring dependencies of xc on x
for simplicity). The metric is defined as a function of position,
Gb(y) = kb

y2 , where kb is a barrier gain. The acceleration-
based potential gradient, ∂qψb(y) = Mb(y)∂qψ1,b(y), uses
ψ1,b(y) = αb

y8 , where αb is the barrier gain.

B. Objective and Damping

The optimization potential is an acceleration-based design
as discussed in VII-B, and it is designed for task space, y =
φ(x) = x − xt, where x, xt ∈ R3 are the current and target



Fig. 5. Robot navigation among cubbies when sequentially composing the
geometric fabric with (a) Layer 1, (b) Layer 2, and (c) Layer 3.

end-effector position in Euclidean space. The acceleration-
based potential gradient, ∂yψ(y) = Mψ(y)∂yψ1(y), uses
ψ1(y) as defined in Eq. 15, and the metric is defined as
Gψ(y) =

((
m − m

)
s
(
‖y‖

)
+ m

)
I, where s(‖y‖) =

0.5(tanh(αm(‖y‖ − r)) + 1), m, m are the upper and lower
isotropic masses, respectively, and αm defines the rate of
transition between 0 and 1, while r offsets the transition. This
design allows for small attraction when far away from the
target while smoothly increasing priority as getting closer to
the target. Damping is defined as in VII-C, where the gain k
in αboost is defined as k = −5

∣∣‖ẏ‖ − Lex,d
e

∣∣, where ‖ẏ‖ is
the current end-effector speed.

C. Experiment Results

As seen in Fig. 1, the robot intelligently navigates the
cubbies. This global behavior was incrementally sequenced
by adding layers of complexity to the underlying geometric
fabric, a technique facilitated by geometric consistency and
acceleration-based design. Fig. 5 shows the evolution of the
robot trajectories for each of the three behavioral layers. Layer
1 depicts a more direct route to the target, ignoring the cubbies
entirely. Layer 2 improves cubby navigation. Layer 3 enables
complete collision avoidance. We dynamically change the
desired end-effector goal during system execution, incurring
rapid changes in system behavior to solve the desired task.

To demonstrate strong generalization, we hand tuned the
system (analogous to training the system) with 6.7% (6 of
90) of the available problems (navigating between a pair of
cubbies), validated it on 90 problems with a 96.7% success
rate, and tested it on 90 problems with a success rate of 92.2%,
where the base was rotated by 30 degrees counterclockwise.
Standard tuning protocol would iterate this cycle of tuning and
testing until the system performed well on the entire problem
distribution; this success rate is indicative of a generally fast
tuning convergence. A second round of tuning easily solved
the observed issues raising the success rate in both cases
to 100%. We also tested the tuned policy on the 6 training
problems with an array of perturbed variants, mimicking
relocating the robot to the scene (such as with a mobile base).
Perturbations to the base (∆x,∆y,∆θ) include combinations
of (−0.1 m,±0.1 m,±π6 rad) and (−0.1 m,±0.1 m, 0 rad).
The system behaved well on all variants.

We additionally quantified path consistency across execution
speeds. Five different execution speeds are tested for the
same task with targets located in 7 different cubbies. The
corresponding end-effector trajectories and speeds are shown
in Fig 6. The minor differences among the paths are caused

Fig. 6. End-effector trajectories for five different execution speeds.

by the optimization potential pushing the system away from
the unbiased nominal path defined by the geometry. Generally
speaking, slower execution speeds subjects the system to
greater influence from the potential, increasing the departure
from path consistency. This is evident in Fig. 6 where the
fastest speeds (blue and purple curves) are nearly coincident
and the slower speeds have greater changes to the paths taken.
To facilitate path consistency, the optimization potential has a
large gradient only when close to its minimum.

We analyze path consistency in the configuration space
by calculating the average arc length integral of each
path against a cost defined as a function of the dif-
ference between this path and another one as L =(∑T

t=0 ‖q̇t‖∆t
)−1∑T

t=0 c(qt, Q)‖q̇t‖∆t, where q, q̇ ∈ R7,
and c(qt, Q) defines the minimum distance between a point
at time t, namely qt, and another path Q, and ∆t = 0.001 s.
Based on this definition, we would expect the average arc
length integrals for each path to be zero if the path matches
each other perfectly. The average arc length integral of each
path with respect to the other ones in the configuration space
is shown the Table I, and from which we can observe that the
arc length integral increases as the difference in the execution
speed increases.

TABLE I
ARC LENGTH INTEGRALS IN THE CONFIGURATION SPACE.

Speed (m/s) 0.5 0.75 1.0 1.5 2.0
0.5 0.0 0.0473 0.0550 0.0992 0.1193
0.75 0.0473 0.0 0.0444 0.0619 0.0868
1.0 0.0550 0.0444 0.0 0.0895 0.1110
1.5 0.0992 0.0619 0.0895 0.0 0.0268
2.0 0.1193 0.0868 0.1110 0.0268 0.0

X. CONCLUSIONS
Geometric fabrics are RMPs whose acceleration policies

are HD2 geometries and whose priority metrics derive from
Finsler energies. They constitute compact encoding of behav-
ior simple enough to shape by hand. They rival the broadest
class of RMPs [15] in expressivity and add a geometric consis-
tency enabling simple layer-wise design and speed regulation.
We document concrete design tools and layering procedures
effective in realistic settings. Interestingly, the strong gen-
eralization observed in our experiments suggests geometric
fabrics may additionally represent a well-informed and flexible
inductive bias for policy learning.
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A. CONTROLLED PARTICLE EXPERIMENTS

These experiments validate the theoretical findings and gen-
erate insight into the behavioral differences between geometric
fabrics and Lagrangian fabrics, and usage of speed control. A
set of 14 particles at rest to the right of a circular obstacle
are attracted to a point to the left (small square). Behavior is
integrated for 15 seconds using a fourth order Runge-Kutta
method.

A. Point Attraction

The behavior for pulling the end-effector towards a target
location is constructed as follows. The task map is x = φ(q) =
q−qd, where q, qd ∈ R2 are the current and desired particle
position in Euclidean space. The metric is designed as

Gψ(x) = (m−m)e−(αm‖x‖)
2

I +mI. (14)

where m, m ∈ R+ are the upper and lower isotropic masses,
respectively, and αm ∈ R+ controls the width of the radial
basis function. For the following experiments, m = 2, m =
0.2, and αm = 0.75. The acceleration-based potential gradient,
∂qψ(x) = Mψ(x)∂qψ1(x), is designed with

ψ1(x) = k

(
‖x‖+

1

αψ
log(1 + e−2αψ‖x‖

)
(15)

where k ∈ R+ controls the overall gradient strength, αψ ∈ R+

controls the transition rate of ∂qψ1(x) from a positive constant
to 0. For these experiments, k = 10, αψ = 10.

For Lagrangian Fabrics, the policy is created from the
Lagrangian, L = ẋTGψ(x)ẋ − ψ(x). For geometric fabrics,
the policy is constructed as ẍ = −∂xψ1(x) and weighted by
Mψ(x) from the Finsler energy, L = ẋTGψ(x)ẋ.

B. Circular Object Repulsion

Collision avoidance with respect to a circular object is con-
structed as follows. The task map is x = φ(q) = ‖q−qo‖

r − 1,
where qo is the origin of the circle and r is its radius. Two dif-
ferent metrics are designed to prioritize this behavior. The first
is just a function of position, Gb(x) = kb

x2 , while the second is
a function of both position and velocity, Gb(x, ẋ) = s(ẋ) kbx2 .
Moreover, kb ∈ R+ is a barrier gain and s(ẋ) is a velocity-
based switching function. Specifically, s(ẋ) = 1 if ẋ < 0 and
s(ẋ) = 0, otherwise. For these experiments, kb = 20.

The acceleration-based potential gradient, ∂qψb(x) =
Mb(x)∂qψ1,b(x), is designed with ψ1,b(x) = αb

2x8 , where
αb ∈ R+ is the barrier gain and αb = 1 for these experiments.

For Lagrangian fabrics, the policy is created from either L =
Gb(x)ẋ2 − ψb(x) or L = Gb(x, ẋ)ẋ2 − ψb(x). For geometric
fabrics, the policy is ẍ = −s(ẋ)ẋ2∂xψ1,b(x). This policy is
weighted by Mb(x) or Mb(x, ẋ).

C. Experiments

Speed control is used with the execution energy designed
as Lex = 1

vd
q̇T q̇, where vd ∈ R+ is the desired Euclidean

speed. For both geometric and Lagrangian fabrics, behavior is
simulated for vd = 2, 4, for cases using Gb(x) and Gb(x, ẋ)
(see Fig. 7).

Fig. 7. Particle behavior for Lagrangian and geometric fabrics with different
metric designs.

All particles successfully circumnavigate the object and
reach the the target position. However, the Lagrangian fabrics
produce more inconsistent behavior across the speed levels.
This is pronounced when using Gb(x, ẋ) since the velocity
gate does not modulate the entire obstacle avoidance policy for
Lagrangian fabrics. Instead, the mass of the obstacle avoidance
policy vanishes, while components of its force remain. The
effect of these forces are amplified when traveling at a higher
velocity, producing the “launching” artifacts. In contrast, ge-
ometric fabrics produce more consistent paths across speed
levels without any launching artifacts. Finally, the velocity gate
facilitates straight-line motion to the desired location once the
obstacle is bypassed. Without this gate the system possesses
large mass, impeding motion to the desired location.

Using the same geometric fabric (with obstacle velocity
gate) and optimization potential from the previous section, the
system is evaluated using: 1) speed control with vd = 2.5,
and 2) basic damping with β = 4. The resulting time-speed
traces are shown in Fig. 8. While both strategies still optimize,
basic damping leads to a rather chaotic speed profile over



Fig. 8. Speed profiles over time when optimizing over a geometric fabric
with (a) basic damping and (b) speed control.

time. In contrast, speed control achieves the desired speed in
approximately 1 second and maintains it before damping to
the final convergence point.
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