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Fig. 1: The dynamic factor graph (DFG) for a RR manipula-
tor, where black dots represent factors, and circles represent
variables. Figure adapted from [48].

Abstract—This paper presents a kinodynamic motion planner
that is able to produce energy efficient motions by taking the full
robot dynamics into account, and making use of gravity, inertia,
and momentum to reduce the effort. Given a specific goal state
for the robot, we use factor graphs and numerical optimization
to solve for an optimal trajectory, which meets not only the
requirements of collision avoidance, but also all kinematic and
dynamic constraints, such as velocity, acceleration and torque
limits. By exploiting the sparsity in factor graphs, we can solve
a kinodynamic motion planning problem efficiently, on par with
existing optical control methods, and use incremental elimination
techniques to achieve an order of magnitude faster replanning.

I. INTRODUCTION

Kinodynamic motion planning is an important and active
research area in robotics [12, 13, 31, 21, 30, 38, 42]. Purely
kinematic motion planning focuses on finding a trajectory
through a robot’s configuration space that satisfies multiple
criteria such as collision-avoidance, obeying joint limits, and
honoring smoothness constraints. However, to produce energy-
efficient motions and satisfy dynamic constraints such as force
and torque limits, we need kinodynamic motion planners that
take the full robot dynamics into account. In addition, many
tasks involving large payloads, fast motions, or both, require
inherently dynamic behaviors that cannot be achieved by
reasoning about kinematics alone.

In this paper we consider the kinodynamic motion planning
as an optimal control (OC) problem, using factor graphs as
a convenient and intuitive representation that also provides
distinct computational advantages. In using OC-techniques
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Fig. 2: Kinodynamic motion planning factor graph. To simplify
the notation, we use a dynamics factor to represent all the
dynamic constraints at each time slice in the factor graph.

we are inspired by the recent work by Zhao et al. [50] for
manipulators, and many other OC-style approaches from the
dynamic walking literature [28, 41]. In using a factor graph
representation we follow the lead of GPMP2 [36], which
solves the kinematic motion planning problem efficiently using
a sparse nonlinear solver [9, 10], and performs fast replanning
by taking advantage of an incremental solver [25].

To incorporate dynamics, we represent kinodynamic con-
straints with a dynamic factor graph (DFG) as introduced
by Xie and Dellaert [48]. Fig. 1 shows the DFG of a RR
manipulator, where the equations of motion are represented as
factors, and variables involved in the equations are represented
as nodes in the graph. We then construct an optimal control
problem by adding factors representing all the usual trajectory
optimization objectives, as well as factors enforcing the dy-
namics between successive time-slices, as shown in Figure 2.

By combining optimal control and factor graphs we obtain
an intuitive, fast kinodynamic motion planner that is on par
with the fastest OC methods, and adds efficient, incremental
kinodynamic replanning. The use of GTSAM [9, 10] as an
optimizer ensures that we are exploiting the benefits of both
sparsity and automatic differentiation, which was shown to
be crucial to achieving state of the art performance by Zhao
et al. [50]. Fast re-planning is useful in many contexts, e.g.,
model-predictive control (MPC). And, as far as we know, no
existing kinodynamic motion planning methods can perform
fast replanning beyond warm-starting as used in MPC.



II. RELATED WORK

Kinodynamic motion planning has a rich history. The term
was coined in the papers by Donald et al. [12, 13], and the well
known Rapidly-exploring Random Trees (RRTs) were in fact
developed with kinodynamic constraints in mind from the very
start [32, 31], as were the Expansive Space Tree algorithms
by Hsu et al. [20, 21]. In many cases, however, sampling-
based methods such as RRTs and Probabilistic Road Maps
(PRM) [27, 2] are used for purely kinematic motion planning.
Satisfying both kinematic and dynamic constraints simultane-
ously makes the kinodynamic motion planning problem more
challenging. Instead of planning in the configuration space.,
we now need to plan in the state space, whose dimension is
twice that of the configuration space.

More importantly, kinodynamic sampling-based methods
need both good distance metrics and efficient steering meth-
ods [7, 1]. A distance metric is needed in RRT-style methods
to choose which part of the tree to expand, and simple metrics
like the Euclidean distance do not incorporate any knowledge
of the system dynamics [38]. The other issue is the lack
of computationally efficient steering methods to connect two
states to produce a segment between them in a way that satis-
fies all differential constraints [29]. LQR-RRT* [38] addresses
both of these issues by linearizing the system dynamics and
using the LQR cost function as the distance metric, similar
to the earlier work by Glassman and Tedrake [16]. Webb
et al. [46] improve on this by connecting any pair of states
exactly via a fixed-final-state-free-final-time OC formulation
for systems with controllable linear dynamics. Unfortunately,
this still requires a linearized version of the dynamics system.
More recently, the AO-RRT method proposed by Hauser et
al. [19] and the SST and SST* methods presented by Li
et al. [49] are able to solve kinodynamics motion planning
problems for systems with a few degrees of freedom.

Optimization-based motion planning methods have re-
cently gained in popularity as they complement sampling-
based methods [34, 40, 42]. Hence, while sampling methods
sometimes produce inconsistent and non-smooth solutions
[37], they are often used to provide a feasible path, after
which trajectory optimization is used to smooth out the
trajectory. Examples of optimization-based methods include
CHOMP [34], STOMP [26], TrajOpt [22] [23], GPMP [35],
and GPMP2 [36]. However, when applied to kinodynamic mo-
tion planning, the non-convex nature of the objective function,
caused by dynamic constraints and constraints representing the
obstacle-free region [3], makes these prone to converge to local
minima unless properly initialized. To deal with the difficulty
of finding optimal solutions that satisfy all the constraints
simultaneously, Sintov et al. [43] generate random points
within the allowable regions of the free parameters to find a
set of feasible solutions, and use a gradient descent approach
to refine the solution to a nearby local optimum. However, this
approach is computationally demanding.

The kinodynamic motion planning problem can also be
tackled with numerical optimal control methods [3], which

enable easy incorporation of constraints and straightforward
definition of objective functions. Based on optimal control
techniques, Zhao et al. [50] present a motion planning ap-
proach, which uses pseudospectral method for trajectory dis-
cretization and interior point method with automatic differ-
entiation for optimization. They solved the motion planning
problem of a 6-axis robot with dynamic constraints, and it is
shown to be much faster than existing works such as [6, 11].
A key element to achieving state of the art performance
is the use of automatic differentiation over numerical or
symbolic differentiation. Optimal control methods have also
been applied to dynamic walking [24, 47] and humanoid robots
motion planning [28, 41].

Finally, there exists an alternative way to deal with kinody-
namic motion planning, which is to decouple the problem into
a geometric part followed by re-timing. For instance, Hauser
et al. [17] use a dynamic interpolation method followed by
a convex time-scaling optimization problem. Pham et al. [39]
solve kinodynamic constraints with Admissible Velocity Prop-
agation (AVP) based on Time-Optimal Path Parameterization
(TOPP) [4], which can be combined with sampling-based
method such as RRT. However, this method may lead to sub-
optimal solutions which sometimes may even be dynamically
unfeasible [5, 50].

III. REVIEW: MOTION PLANNING WITH FACTOR GRAPHS

In this part, we review GPMP2 [36], a purely kinematic
motion planning method that optimizes for a collision-free and
smooth trajectory subject to a set of constraints. GPMP2 uses
factor graphs to represent the corresponding objective func-
tions, by making use of an incremental Bayes tree solver [25],
which supports fast replanning under changing conditions
and/or updated goal states.

A. Fixed Start and Goal Poses

Since many applications demand a manipulator to move the
end-effector from a start pose to a goal pose, both of the pose
constraints are added to the motion planning problem. The
cost of start and goal pose constraints can be expressed as a
function of the state vectors xs and xg:

h1(xs) = f(xs)− ps (1)
h2(xg) = f(xg)− pg (2)

where f() is the forward kinematics which maps any config-
uration to a workspace (this definition applies to the rest of
the paper), ps is the desired start pose and pg is the desired
goal pose of the end effector.

B. Collision-avoidance

To efficiently check collision for an arbitrarily shaped robot
body, GPMP2 uses the method presented in CHOMP [34],
in which a robot’s body is simplified to be a set of spheres,
and the distance of the body to any point in the workspace
is given by the distance to the center of the sphere minus its
radius. The obstacles are represented by precomputed Signed
Distance Field (SDF) matrices. The distance is positive if a



point is outside of the obstacle, zero if it is on the surface,
and negative when it lies inside the obstacle.

Hence, the obstacle cost function h3(xi) is obtained by
computing the signed distances for the robot in state xi:

h3(xi) = csdf (f(xi)) (3)

where f() is the forward kinematics, and csdf () is defined as
the hinge loss:

csdf (z) =

{
−d(z) + ε if d(z) ≤ ε
0 o/w

(4)

where d(z) is the signed distance from any point z in the
workspace to the closest obstacle surface, which is obtained
from a pre-computed SDF. Here we add a threshold ε to
prevent the robot from getting too close to obstacles.

C. Task-dependent Kinematic Constraints

In addition to the requirements of goal accomplishment, col-
lision avoidance, and smoothness, the planner will sometimes
have to satisfy user-specified constraints such as keeping the
end-effector at a certain pose along the trajectory. For example,
the cost of an end effector pose constraint can be expressed
as a function of the state vector xi:

h4(xi) = f(xi)− pe (5)

where f() is the forward kinematics, and pe is the desired end
effector pose of the robot.

D. Trajectory Smoothness

Finally, [36] add a Gaussian process (GP) smoothness prior
with cost function

h5(xi−1, xi) = xi − Φ(ti, ti−1)xi−1 (6)

and covariance matrix

Σ5 =

[
1
3∆t3iQC

1
2∆t2iQC

1
2∆t2iQC ∆tiQC

]
, (7)

where Qc is the power-spectral density matrix associated with
the GP, and the state transition matrix

Φ(ti, ti−1) =

[
1 ∆ti
0 1

]
(8)

is associated with a constant velocity assumption between
times ti−1 and ti, and ∆ti = ti − ti−1.

E. Optimization with Factor Graphs

Given the cost functions associated with the constraints
mentioned above, the trajectory optimization problem is for-
mulated as follows:

x∗ = argmin
x
{‖h1(xs)‖2Σ1

+ ‖h2(xg)‖2Σ2
+∑

i

(‖h3(xi)‖2Σ3
+ ‖h4(xi)‖2Σ4

+ ‖h5(xi−1, xi)‖2Σ5
)}.

(9)
where the Σ terms specify the covariance for each cost
function in the optimization. A smaller Σ value imposes larger
penalty for the constraint. Hence, the optimization result will
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Fig. 3: Motion planning factor graph, adapted from [36].

tend to satisfy such a constraint at a higher priority. Eq. 9
can be represented as the factor graph shown in Fig. 3,
and solved numerically by using iterative approaches such
as Gaussian-Newton or Levenberg-Marquardt. In GPMP2,
sparsity is exploited through use of the GTSAM solver [9, 10].

F. Fast Replanning using the Bayes Tree

Factor Graph Bayes Tree

x4, x3

x2 : x3

x1 : x2

x0 : x1
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Fig. 4: An example of motion planning factor graph and the
corresponding Bayes tree, adapted from [36]. Here we use
the goal change of the planning problem as an example to
illustrate the idea of incremental replanning with the Bayes
tree, where the change of factors in the graph marked with
the dashed box only affects part of the Bayes tree as shown
in the dashed box.

Replanning problems are very common in real-world tasks,
for instance, when the goal state for the robot has been
changed, or obstacles in the environment have been moved
around. If the majority of the problem is not changed, then it
will not be necessary to solve the entire problem again.

GPMP2 maintains the solution as a Bayes tree [25], which is
a directed data structure generated from incremental elimina-
tion on the underlying factor graph, and incrementally updates
this representation in response to changing conditions. Fig. 4
uses a goal change in a planning problem as an example to
illustrate the idea of incremental replanning with the Bayes
tree, where the change of factors in the graph only affects
part of the Bayes tree as shown in the dashed box.



IV. EXTENSION TO KINODYNAMIC MOTION PLANNING

When fulfilling both kinematic and dynamic constraints
simultaneously, the kinodynamic planning problem becomes
more difficult. However, we can formulate the planning prob-
lem using factor graphs with the addition of the dynamic
constraints, and solve the problem efficiently with numerical
optimization tools such as GTSAM, which is able to explore
the sparsity in factor graphs, and use heuristics such as
minimum-degree MD [15] or nested dissection (ND) [14]
to generate elimination orders which reduce the computation
complexity in solving the optimization problem [10].

A. Manipulator kinodynamic Constraints

The manipulator kinodynamic constraints include both
equality and inequality constraints. For equality constraints,
we closely follow [33, 48]. The following equations of motion
express the equality constraints between link j and link j − 1
imposed by joint j, assuming rotational joints.

Vj = [AdTj,j−1(qj)]Vj−1 −Aj q̇j−1 (10)

V̇j = [AdTj,j−1(qj)]V̇j−1 −Aj q̈j−1 − [adVj ]Aj q̇j−1 (11)

AdTTj+1,j(qj+1)Fj+1 = Fj + GjV̇j − [adVj ]TGjVj (12)

FT
j Aj = τj (13)

where Aj (expressed in link j coordinate frame) is the screw
axis for joint j, and AdTj,j−1(qj) is the adjoint map of
the transform Tj,j−1 between the two adjacent links. The
relationship between twist Vj and twist Vj−1 is described
in Equation (10) where q̇j−1 represents the angular velocity
of joint j − 1. Equation (11) shows the constraint between
acceleration V̇j−1 of link j − 1 and acceleration V̇j of link j.
Equation (12) describes the balance between the wrench Fj

and the wrench Fj+1 applied to link j. The torque applied
at joint j is expressed as the projection of wrench Fj on the
screw axis Aj corresponding to joint j.

By representing all the variables in the equations of motion
at time ti with state vector xi, we write the cost function
corresponding to the above equality constraints in a compact
form as the following:

h6(xi) = LHS(EoM(xi))−RHS(EoM(xi)) (14)

where EoM() is used to represent the equations of motion
from (10) to (13), and LHS and RHS stand for ”Left Hand
Side” and ”Right Hand Side” of the equations respectively.

Inequality constraints include joint limits such as limits
on joint angles, angular velocities, angular accelerations, and
torques applied at each joint. We use a hinge loss function
to represent the i-th inequality constraint f(xi) ≤ ei, and the
cost function h7(xi) under the current state can be written as

h7(xi) = climit(f(xi)) (15)

where climit() is defined as the hinge loss:

climit(z) =

 a(zl − z + ε) if z − zl ≤ ε
a(z − zu + ε) if zu − z ≤ ε
0 o/w

(16)

where zl is the lower limit, zu is the upper limit, ε is a constant
threshold to prevent exceeding the limit, and a is a constant
ratio which determines how fast the error grows as the value
approaches the limit. If the value is not within the threshold,
then there will be no cost. In this way, the limit violations are
prevented during the optimization.

The DFG of an RR manipulator shown in Fig. 1 is used
to illustrate the dynamic constraints in kinodynamic motion
planning. This DFG associated with the motion planning
considers the robot dynamics, and ensures that all dynamic
constraints are satisfied when solving for a motion plan.

B. Task-dependent Dynamic Constraints

In addition, the planner sometimes will have to optimize
a user-specified cost function such as a minimum torque
constraint, for which the cost function can be expressed as

h8(xi) =

N∑
j

τj(xi) (17)

where τj(xi) is the torque at joint j expressed as a function
of state vector xi, which can be calculated through inverse
dynamics. We can directly retrieve all the torque values from
the DFG.

C. Trajectory Smoothness

Here we use a continuous-time configuration space trajec-
tory with a constant acceleration instead of a constant velocity,
where the state transition matrix Φ(ti, ti−1) in equation (6) is
replaced with

Φ(ti, ti−1) =

1 ∆ti
1
2 (∆ti)

2

0 1 ∆ti
0 0 1

 (18)

and the covariance matrix is

Σ5 =

 1
2∆t5iQC

1
8∆t4iQC

1
6∆t3iQC

1
8∆t4iQC

1
3∆t3iQC

1
2∆t2iQC

1
6∆t3iQC

1
2∆t2iQC ∆tiQC

 (19)

D. Kinodynamic Motion Planning Factor Graph

A factor graph is used to solve the kinodynamic mo-
tion planning problem, where constraints including start and
goal pose constraints, manipulator dynamic constraints, task-
dependent kinematic and dynamic constraints, and constraints
that ensure a smooth and collision-free trajectory are repre-
sented as factors in the graph, as shown in Fig. 2.

V. FAST REPLANNING WITH INCREMENTAL TECHNIQUE

We are able to solve kinodynamic motion replanning prob-
lems efficiently by taking advantage of the incremental tech-
nique with iSAM2, which uses the Bayes tree to perform
incremental optimization on the factor graph. In the following
kinodynamic motion replanning problem, a RR manipulator
needs to find a minimum torque trajectory to move the end-
effector from the given start pose to the desired goal pose
while respecting both kinematic and dynamic constraints. A
Bayes tree is generated by eliminating the variables in the
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Fig. 5: (a) An example factor graph for a kinodynamic motion replanning problem of a robot with two links and two revolute
joints, where the orange shaded regions show the factor changed due to a change of the goal configuration; (b) The corresponding
Bayes tree with the orange shaded regions showing the parts affected by the change of factors in the graph. In this Bayes
tree, the characters q, v, a, V, A, F and T represent joint angle, joint velocity, joint acceleration, link twist, link acceleration,
wrench, and torque respectively. The first number ranging from 1 to 2 represents the link or joint index, and the second number
ranging from 0 to 3 represents the time index.

kinodynamic motion planning factor graph from the first state
to the last state. With a change of the goal configuration, only
the factor in the orange shaded portion of the graph shown
in Fig. 5 will be changed, and the new planning problem
can be solved with the corresponding Bayes tree, where the
orange shaded regions show the affected parts compared to the
original Bayes tree. The optimization result obtained from the
Bayes tree will only be partially changed since the majority
of the Bayes tree is left unchanged.

The proposed kinodynamic motion replanning algorithm
is implemented with iSAM2 incremental solver [25]. First,
we check for the information which has been updated; next,
we change the factors in the graph according to the updated
information; finally, we run the incremental algorithm to
update the Bayes tree implemented in iSAM2 to get the new
solution.

VI. EVALUATION

A. Experiment Setup
We implemented both a batch version (DFGP) and an

incremental version (iDFGP) of the method above using the
GTSAM C++ library [9, 10], and ran simulations in V-REP
for visualization. We used the Levenberg-Marquardt algorithm
to solve the nonlinear least squares optimization problem for
KMDP, with an initial value for λ = 0.01, and terminating
the optimization process if either of the following conditions
is satisfied: 1) it reaches a maximum of 200 iterations, or 2)
the relative decrease in error is smaller than 10−5. For the
incremental version, iDFGP uses the iSAM2 [25] optimizer
with default settings.

B. Kinodynamic Motion Planning for the Acrobot

Fig. 6: Acrobot

The Acrobot [45] is a planar RR manipulator with an
actuator at the elbow but no actuator at the shoulder, as shown
in Fig. 6. The task is to bring the Acrobot from its initial rest
configuration to the upright pose where there is limited torque
applied at the elbow joint. The equations of motion of the
Acrobot are described in [45].

We perform kinodynamic motion planning for the Acrobot
with our DFGP algorithm. Due to the lack of source code for
any other optimization-based kinodynamic motion planning
algorithms, we only benchmark it against some of the state-
of-art sampling-based kinodynamic motion planners, such
as Stable-Sparse-RRT (SST), Stable-Sparse-RRT* (SST*)
and Asymptotically-Optimal-RRT (AO-RRT). All benchmarks
were run on a single thread of a 4.0GHz Intel Core i7 CPU.

We used the implementations of the RRT-style methods



TABLE I: Results for Kinodynamic Motion Planning.

Tests DFGP SST SST* AO-RRT

Acrobot
Success Rate (%) 100 98 100 90
Average Time (s) 1.07 180.55 229.67 1058.48
Maximum Time (s) 1.07 1054.89 2152.95 5868.87

Kuka Task1
Success Rate (%) 86 – – –
Average Time (s) 2.15 – – –
Maximum Time (s) 3.39 – – –

Kuka Task2
Success Rate (%) 90 – – –
Average Time (s) 1.75 – – –
Maximum Time (s) 2.92 – – –

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

Fig. 7: A solution for the kinodynamic motion planning problem where the task is to bring the Acrobot from the rest
configuration as in (a) to the goal configuration as in (t). Images (b)-(s) show the intermediate configurations along the
planned trajectory.

from an open source repository [18] and implemented a test
case for the Acrobot using the framework of the example
problem in the repository. The parameters used for SST and
SST* are suggested by the author of the original paper [49],
and default settings are used for AO-RRT. We ran each of
the RRT algorithms 50 times, and each time the test was
terminated if any of the following events occurred: 1) found a
solution with trajectory time length less than 10 seconds, or 2)
reached a maximum number of 300k iterations. We counted a
trial as a success if a trajectory with a time less or equal to
10 seconds was returned, and calculated the success rate and
the average computation time based on the successful trials.

For the proposed DFGP algorithm, we set the trajectory
length as 10 seconds and initialized the joint trajectory with
an acceleration-smooth straight-line, similar to initialization
methods used in [35, 36]. We ran DFGP 50 times and
calculated the average computation time.

The benchmark results for the Acrobot are presented in Ta-
ble I. It should not be surprising to find that RRT-style methods
are mush slower than the proposed DFGP algorithm. From
the results of RRT-style methods, we can see the difficulty
of solving the kinodynamic motion planning problem for a
under-actuated robotic system. Without taking full dynamics
of the Acrobot into consideration, it is almost impossible for
a motion planner to find a solution to bring the Acrobot from

its initial rest configuration to the upright pose. Fig. 7 shows a
solution of the proposed DFGP algorithm, in which we observe
that the Acrobot swings back and forth to gain momentum
while bending the first joint to reduce the moment arm so that
it can move the end effector to the goal pose.

From basic system dynamics, we know there are only two
equilibrium points for the Acrobot; one is at the rest configu-
ration, and the other one is at the upright configuration [44].
Therefore, we did not attempt any replanning experiments in
the case of the Acrobot.

C. Kinodynamic Motion Planning for a KUKA Arm

The KUKA LBR iiwa [8] is a lightweight industry robot
with 7 actuated revolute joints. The tasks performed in our
experiments are the following: 1) moving a block from one
location to the desired goal location in the environment with
obstacles, and 2) moving a block from one location to the
desired goal location with minimum torque constraint.

We perform both kinodynamic motion planning tasks
for the KUKA robot with the proposed DFGP algorithm,
and the RRT-style methods Stable-Sparse-RRT(SST), Stable-
Sparse-RRT*(SST*) and Asymptotically-Optimal-RRT(AO-
RRT). For each task, we created 50 different tests with the
same start configuration but randomly generated goal configu-
rations. We ran 50 tests for each task with DFGP, SST, SST*
and AO-RRT. However, due to the curse of dimensionality,
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Fig. 8: (a)-(e) show a solution obtained by the DFGP algorithm for kinodynamic motion planning task 1, where the objective
is to find a trajectory for the KUKA robot to bring a block from the initial location as shown in (a) to the goal location as
shown in (t) while avoiding collision. (f)-(j) show a solution obtained by the iDFGP algorithm for the corresponding replanning
problem with the new goal as shown in (j).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 9: (a)-(e) show a solution obtained by the DFGP algorithm for kinodynamic motion planning task 2, where the objective
is to find a trajectory for the KUKA robot to bring a block from the initial location as shown in (a) to the goal location as
shown in (t). (f)-(j) show a solution obtained by the DFGP algorithm for the same task but with a minimum torque constraint
applied. (k)-(o) show a solution obtained by the iDFGP algorithm for the corresponding replanning problem with the new goal
as shown in (o) while the minimum torque is required.

none of the RRT-style methods were able to find a solution
after more than 8 hours of computation.

The benchmark results for task 1 and task 2 are shown in
Table I. In task 1, we count one trial as a success if a collision
free trajectory is found and all the dynamic constraints are
satisfied. In task 2, one trial is considered successful if the
goal is reached while all the dynamic constraints are satisfied

and the total torque (total torque for all joints in each run) is
less than the one without a minimum torque constraint. The
average and maximum time to success is calculated with only
the successful trials. With the minimum torque constraint, the
average torque based on the successful trials is 1522.25 N*m,
while it is 1747.91 N*m without this constraint.

Figures 8a to 8e show a solution obtained by the proposed



Fig. 10: Torque trajectories for joint 2 (orange) and joint 4
(purple) of KUKA robot in task 2, where solid lines are results
with minimum torque constraint, and dashed lines are results
without minimum torque constraint.

DFGP algorithm for task 1 with the goal configuration shown
in Fig. 8e, from which we observe that the KUKA robot brings
the block to the goal location while avoiding the desk which
is initially above it.

Figures 9f to 9j show a solution obtained by the proposed
DFGP algorithm for task 2 with the goal configuration shown
in Fig. 9j. We observe that the KUKA robot first moves
towards the center to reduce the moment arm, then pushes
upwards so that it can bring the block to the goal location
with less torque applied as compared to the solution shown in
Fig. 9a to Fig. 9e, where the start and goal configurations are
the same, but with no torque constraint applied.

The torque trajectories of joint 2 and joint 4 (the two joints
that do most of the work in task 2) of the KUKA robot are
plotted in Figure 10, where the solid lines and dashed lines
represent the torque trajectories with and without the minimum
torque constraint, respectively. From the plots in Fig. 10 we
observe that a more energy efficient motion plan is obtained
by the DFGP algorithm with the minimum torque constraint.

D. Fast Kinodynamic Motion Replanning for the KUKA

TABLE II: Results for Kinodynamic Motion Replanning.

Kuka Tests DFGP-L DFGP-W iDFGP

Task1
Success Rate (%) 86 92 80
Average Time (s) 1.98 1.12 0.119
Maximum Time (s) 3.33 3.09 0.200

Task2
Success Rate (%) 90 98 96
Average Time (s) 1.68 0.63 0.074
Maximum Time (s) 2.98 1.76 0.078

We change the goal configurations generated for each kin-
odynamic motion planning task to new goal configurations,
and solve the replanning problem with both the batch version
DFGP and the incremental version iDFGP. For the batch

version DFGP, we ran the tests with two different initialization
methods, one initialized with an acceleration-smooth straight-
line (named DFGP-L), and the other uses a warm start with
the result from the corresponding original planning problem
(named DFGP-W).

Replanning benchmark results for task 1 and task 2 are
summarized in Table II. The same rules are used to count the
successful trials and calculate the average and maximum com-
putation time as described in the original planning problem.

From the results, we observe that in both task 1 and task
2, the iDFGP algorithm is about 8 to 10 times faster than the
DFGP algorithm with the warm start initialization, and about
20 times faster than the DFGP algorithm with an acceleration
smooth straight-line initialization, with only a small loss in
the success rate in task 1.

Our experimental setting for task 1 is similar to the one
in [50], and the results show that the efficiency of our
DFGP algorithm is about the same as their method, and our
iDFGP algorithm is about 20 times faster than either batch
method. The failure of iDFGP algorithm in task 1 might be
caused by the fact that iDFGP uses the original solution as
initialization, which can be a bad choice if the goal has been
changed dramatically. However, the DFGP algorithm using
the warm start initialization did not suffer from any loss in
success rate due to the fact that DFGP uses the Levenberg-
Marquardt optimizer, which is a more powerful optimization
algorithm compared to the one used by iDFGP, and is able to
provide appropriate step damping to help converge to better
results [10]. The average torques calculated based on the
results of the successful trials for DFGP-L, DFGP-W, and
iDFGP were 1466.29 N*m, 1490.20 N*m, and 1489.03 N*m,
respectively.

Figures 8f to 8j show a solution obtained by the proposed
iDFGP algorithm for the replanning problem in task 1, where
the goal is changed from Fig. 8e to Fig. 8j. Since the envi-
ronment is the same and the goal is not dramatically changed,
the iDFGP algorithm is able to update the trajectory with an
incremental Bayes tree solver, and find a solution which is
very close to the original trajectory with only the part near
the goal being modified. A similar effect can be observed in
Fig. 9, where Figures 9k to 9o show a solution by the proposed
iDFGP algorithm for the change of goal replanning problem
in task 2.

VII. CONCLUSION

We consider the kinodynamic motion planning as an optimal
control problem and efficiently solve using the factor-graph-
based GTSAM solver, obtaining performance on par withe the
state of the art for initial planning. We are able to perform fast
replanning by taking advantage of the incremental Bayes tree
solver, which avoids resolving the entire problem if only part
of the trajectory needs to be updated.

In the future work, we would like to explore more initial-
ization strategies to improve the success rate of the proposed
kinodynamic motion planning algorithm and help the opti-
mization solver to converge to a better local optimal solution.
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